Return to search

An atomistic investigation on the nanometric cutting mechanism of hard, brittle materials

The demand for ultra precision machined devices and components is growing at a rapid pace in various areas such as the aerospace, energy, optical, electronics and bio-medical industries. Because of their outstanding engineering properties such as high refractive index, wide energy bandgap and low mass density, there is a continuing requirement for developments in manufacturing methods for hard, brittle materials. Accordingly, an assessment of the nanometric cutting of the optical materials silicon and silicon carbide (SiC), which are ostensibly hard and brittle, has been undertaken. Using an approach of parallel molecular dynamics simulations with a three-body potential energy function combined with experimental characterization, this thesis provides a quantitative understanding of the ductile-regime machining of silicon and SiC (polytypes: 3C, 4H and 6H SiC), and the mechanism by which a diamond tool wears during the process. The distinctive MD algorithm developed in this work provides a comprehensive analysis of thermal effects, high pressure phase transformation, tool wear (both chemical and abrasive), influence of crystal anisotropy, cutting forces and machining stresses (hydrostatic and von Mises), hitherto not done so far. The calculated stress state in the cutting zone during nanometric cutting of single crystal silicon indicated Herzfeld–Mott transition (metallization) due to high pressure phase transformation (HPPT) of silicon under the influence of deviatoric stress conditions. Consequently, the transformation of pristine silicon to β-silicon (Si-II) was found to be the likely reason for the observed ductility of bulk silicon during its nanoscale cutting. Tribochemical formation of silicon carbide through a solid state single phase reaction between the diamond tool and silicon workpiece in tandem with sp3-sp2 disorder of carbon atoms from the diamond tool up to a cutting temperature of 959 K has been suggested as the most likely mechanism through which a diamond cutting tool wears while cutting silicon. The recently developed dislocation extraction algorithm (DXA) was employed to detect the nucleation of dislocations in the MD simulations of varying cutting orientation and cutting direction. Interestingly, despite of being a compound of silicon and carbon, silicon carbide (SiC) exhibited characteristics more like diamond, e.g. both SiC iii workpiece and diamond cutting tool were found to undergo sp3-sp2 transition during the nanometric cutting of single crystal SiC. Also, cleavage was found to be the dominant mechanism of material removal on the (111) crystal orientation. Based on the overall analysis, it was found that 3C-SiC offers ease of deformation on either (111) <-110>, (110) <001> or (100) <100> setups. The simulated orthogonal components of thrust force in 3C-SiC showed a variation of up to 45% while the resultant cutting forces showed a variation of 37% suggesting that 3C-SiC is anisotropic in its ease of deformation. The simulation results for three major polytypes of SiC and for silicon indicated that 4H-SiC would produce the best sub-surface integrity followed by 3C-SiC, silicon and 6H-SiC. While, silicon and SiC were found to undergo HPPT which governs the ductility in these hard, brittle materials, corresponding evidence of HPPT during the SPDT of polycrystalline reaction bonded SiC (RB-SiC) was not observed. It was found that, since the grain orientation changes from one crystal to another in polycrystalline SiC, the cutting tool experiences work material with different crystallographic orientations and directions of cutting. Thus, some of the grain boundaries cause the individual grains to slide along the easy cleavage direction. Consequently, the cutting chips in RB-SiC are not deformed by plastic mechanisms alone, but rather a combination of phase transformation at the grain boundaries and cleavage of the grains both proceed in tandem. Also, the specific-cutting energy required to machine polycrystalline SiC was found to be lower than that required to machine single crystal SiC. Correspondingly, a relatively inferior machined surface finish is expected with a polycrystalline SiC. Based on the simulation model developed, a novel method has been proposed for the quantitative assessment of tool wear from the MD simulations. This model can be utilized for the comparison of tool wear for various simulation studies concerning graphitization of diamond tools. Finally, based on the theoretical simulation results, a novel method of machining is proposed to suppress tool wear and to obtain a better quality of the machined surface during machining of difficult-to-machine materials.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:650536
Date January 2013
CreatorsGoel, Saurav
ContributorsLuo, Xichun; Reuben, Robert L.
PublisherHeriot-Watt University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10399/2806

Page generated in 0.0022 seconds