Return to search

Design of the Communication and Control Systems for Robotic Cleaning and Inspection of Solar Power Plants

The aim of this research is to design the communications monitoring and control functionalities of an energy-efficient, scalable system, capable of supporting robotic cleaning and fault detection of photovoltaic panels, deployed in solar electric power generation plants. The communication functionality is implemented by using a wireless sensor network (WSN) deployed over the photovoltaic energy production plant’s area. The network is designed to support the communication needs of static-sensing nodes as well as moving robotic units. It transports sensing data and commands between end units and the monitoring and control entity of the electric energy generation plant. Having robotic units replace humans in the cleaning and inspection tasks not only reduces the operational cost of the plant, but also results in increased energy production. Several innovations were necessary to achieve our objective, which are presented in this dissertation. A working prototype of the cleaning robotic system was built and tested in a solar power plant for a duration of 6 month. The prototyping was done in collaboration of Tipot technology.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/42274
Date11 June 2021
CreatorsTang, Qianjun
ContributorsMakrakis, Dimitrios
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0296 seconds