Return to search

Low Cost Floating-Point Extensions to a Fixed-Point SIMD Datapath

The ePUMA architecture is a novel master-multi-SIMD DSP platform aimed at low-power computing, like for embedded or hand-held devices for example. It is both a configurable and scalable platform, designed for multimedia and communications. Numbers with both integer and fractional parts are often used in computers because many important algorithms make use of them, like signal and image processing for example. A good way of representing these types of numbers is with a floating-point representation. The ePUMA platform currently supports a fixed-point representation, so the goal of this thesis will be to implement twelve basic floating-point arithmetic operations and two conversion operations onto an already existing datapath, conforming as much as possible to the IEEE 754-2008 standard for floating-point representation. The implementation should be done at a low hardware and power consumption cost. The target frequency will be 500MHz. The implementation will be compared with dedicated DesignWare components and the implementation will also be compared with floating-point done in software in ePUMA. This thesis presents a solution that on average increases the VPE datapath hardware cost by 15% and the power consumption increases by 15% on average. Highest clock frequency with the solution is 473MHz. The target clock frequency of 500MHz is thus not achieved but considering the lack of register retiming in the synthesis step, 500MHz can most likely be reached with this design.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-101586
Date January 2013
CreatorsKolumban, Gaspar
PublisherLinköpings universitet, Datorteknik, Linköpings universitet, Tekniska högskolan
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds