The aim of this study was to investigate the microstructure, microhardness and biocompatibility properties of nano hydroxyapatite (HA) doped with a constant yttrium (Y3+) and varying fluoride (F-) compositions. HA was synthesized via precipitation method and sintered at 1100& / #61616 / C for 1 hour. Increased densities were achieved upon Y3+ doping while F- doping led to a decrease in densities. For structural analysis, XRD, SEM and FTIR spectroscopy examinations were performed. No secondary phases were observed in XRD studies upon doping. Lattice parameters decreased due to substitutions of ions. In SEM analysis, addition of doping ions was observed to result in smaller grains. In FTIR analysis, in addition to the characteristic bands of HA, novel bands indicating the substitution of F- ions were observed in F- ion doped samples. The highest microhardness value was obtained for the sample doped with 2.5%Y3+, 1%F-. Increased F- ion contents resulted in decreased microhardness values.
For biocompatibility evaluation, in vitro tests were applied to the materials. MTT assay was performed for Saos-2 cell proliferation analysis. Y3+ and F- ion incorporation was found to improve cell proliferation on HA discs. Cells were found to attach and proliferate on disc surfaces in SEM analysis. ALP assay showed differentiation of cells on the discs can be improved by doping HA with an optimum amount of F- ion. Dissolution tests in DMEM revealed that structural stability of HA was improved with F- ion incorporation.
The material exhibiting optimum structural, mechanical and biocompatibility properties was HA doped with 2.5%Y3+, 1%F-.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12611540/index.pdf |
Date | 01 January 2010 |
Creators | Toker, Sidika Mine |
Contributors | Evis, Zafer |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0023 seconds