This thesis is devoted to some aspects of the theory of the weak continuous gamma radiation (often called 'Internal Bremsstrahlung') which accompanies beta processes, i.e. negative and positive electron emission and orbital electron capture. Whenever a beta process is accompanied by this gamma radiation, it will be called a "radiative" beta process, otherwise "radiationless".
The results presented in this thesis go beyond those obtained by other authors in two respects.
In the first place, the radiative beta emission probability is calculated for an allowed transition taking into account an arbitrary mixture of all the five beta interactions. Previously, only the theory for the case of pure interactions has been carried out. In the calculations, as in previous ones, Coulomb effects have been neglected.
In the second place, the radiative K capture probability is calculated for an all owed transition taking into account again an arbitrary mixture of the five beta interactions, and, in addition, Coulomb effects. Previously, only the case of pure interactions with the neglection of Coulomb effects has been considered. In order to take Coulomb effects into account, a "semi-relativistic" approximation for the solutions to the Dirac equation with a Coulomb potential has been developed. It turns out that taking Coulomb effects into account reduces the probability of radiative K capture by an order of magnitude. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/40533 |
Date | January 1955 |
Creators | Hess, Forest Gene |
Publisher | University of British Columbia |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
Page generated in 0.0019 seconds