In this thesis we examine 360 degree curvilinear displays and their potential for the display of 3D information. We present two systems: a spherical display prototype and a cylindrical display. Our spherical display prototype used the lack of set user position and natural visibility constraints of a spherical display to create a 3D display system that treated the sphere as a volumetric display through the use of 360 degree motion parallax and stereoscopy. We evaluated these properties by examining how our use of stereoscopy and 360 degree motion parallax, might aid in the preservation of basic body orientation cues and in pose estimation tasks in a telepresence application with our final cylindrical display. Results suggest the combined presence of 360 degree motion parallax and stereoscopic cues within our cylindrical display significantly improved the accuracy with which participants were able to assess gaze and hand pointing cues,
and to instruct others on 3D body poses. The inclusion of 360 degree motion parallax and
stereoscopic cues also led to significant increases in the sense of social presence and telepresence reported by participants. / Thesis (Master, Computing) -- Queen's University, 2013-01-29 14:14:33.822
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/7794 |
Date | 01 February 2013 |
Creators | Bolton, John |
Contributors | Queen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.)) |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English, English |
Detected Language | English |
Type | Thesis |
Rights | This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner. |
Relation | Canadian theses |
Page generated in 0.0021 seconds