Return to search

Backdoor Detection based on SVM

With the improvement of computer technologies and the wide use of the Internet, network security becomes more and more significant. According to the relevant statistics, malicious codes such as virus, worms, backdoors, and Trojans launch a lot of attacks. Backdoors are especially critical. Not only can it cross firewalls and antivirus software but also will steal confidential information and misuse network resources and launch attacks such as DDoS¡]Distributed Denial of Service¡^.
In this research, we analyze the properties and categories of backdoors and the application of data mining and support vector machines in intrusion detection. This research will focus on detecting the behavior of backdoor connection, and we propose a detecting architecture. The architecture is based on SVM, which is a machine learning method based on statistic theory and proposed by Vapnik to solve the problems in Neural Network techniques.
In system modules, this research chooses IPAudit as our network monitor and libsvm as a SVM classifier. The packets captured by IPAudit will be classified into interactive or non-interactive flow by libsvm, and the result will be compared with legal service lists to determine whether a connection is a backdoor connection. We compare the accuracy of SVM, C4.5, and Na

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0729105-105839
Date29 July 2005
CreatorsTzeng, Zhong-Chiang
ContributorsNian-Shing Chen, Chia-Mei Chen, Sheng-Tzong Cheng, Bing-Chiang Jeng
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0729105-105839
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0087 seconds