This thesis develops an analytical model of a small-scale solar central receiver power plant located at the California Polytechnic State University in San Luis Obispo, California at 35.28° N, 120.66° W. The model is used to analyze typical energy output at any time during the year. The power plant is designed to produce an output of 100 kW electrical power, and is supplemented by the combustion of natural gas. Methodologies for determining the proper size and layout of heliostats, optimal tower height, receiver size, and turbine engine selection are developed. In this specific design, solar shares of up to 73.2% and an annual average of 44% are possible through the use of a gas-solar hybrid microturbine engine. Larger solar shares are not possible due to the limited size of land (about 0.5 acres used for this project) which limits the number of possible heliostat installations.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-1844 |
Date | 01 June 2012 |
Creators | Murray, Daniel |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses and Project Reports |
Page generated in 0.0157 seconds