Wolf-Rayet (WR) stars are a late stage in the evolution of massive stars (M ≥ 25 M⊙), characterized by strong stellar winds (dM/dt ~ 10−5 M⊙/yr). Ionizing radiation from the central star heats the expanding outer envelope of material, leading to recombination emission lines of helium, carbon, nitrogen, oxygen, and/or hydrogen in the WR star spectrum. This outflow of material enriches the surrounding ISM, which is further enriched when the WR star likely explodes as a type Ib or Ic supernova. WR stars are also likely progenitors for long soft gamma-ray bursts, and they are excellent tracers of the present sites of massive star formation in our Galaxy.
The current Galactic WR star catalog is very incomplete. I discuss three methods of selecting strong WR star candidates from crowded fields in the Galactic plane: image subtraction, narrowband (NB) color, and broadband (BB) color. Using these methods, an extensive near-infrared narrowband survey begun in 2005-2006, and extended by me, has yielded 28% of the known Galactic WR stars to date; I add 59 new WR stars to the total in this thesis. I then compare two recent models of the Galactic population of WR stars, discuss the implications with respect to how many WR stars remain to be found, and use these results to inform an analysis of the remaining 834 strong carbon-rich WC star candidates from the survey. I also provide a listing of these 834 WC star candidates throughout our Galaxy, and map them; a central result of this thesis. Finally, I present selection criteria which may be used to identify [WR] stars (central stars of planetary nebulae which display WR spectral features), and proof of concept observations which led to 7 new confirmed [WC] stars.
Identifer | oai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/D8N87B9H |
Date | January 2017 |
Creators | Kanarek, Graham Childs |
Source Sets | Columbia University |
Language | English |
Detected Language | English |
Type | Theses |
Page generated in 0.0027 seconds