This dissertation is a compilation of four separate studies under the umbrella of the Chemical Abundance of Stars in the Halo (CASH) Project. The overall goal of the CASH project is to gain a better understanding of the events and processes that occurred during the early universe that shaped the composition of the stars that we observe today. In order to do so, we have conducted a comprehensive study of the abundances of the oldest observable stars. These stars have preserved the chemical signature of the material from which they formed in their atmospheres. The old, metal-poor stars that make up the stellar halo thus provide a means to study the history of the universe. We will discuss the motivation for the project in Chapter 1, introducing the field of metal-poor halo stars and providing background about the processes that have contributed to the chemical make up of the stars. The first generation of stars that created much of the material from which these stars formed are discussed, along with the low-mass evolved stars that synthesized additional elements in their interiors that are also observed in metal-poor stars today. Utilizing so-called ``snapshot'' spectra obtained with the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory, we provide abundances for 262 stars over the sample. In Chapter 2, we present Robospect, a new code to automatically measure and deblend line equivalent widths for both absorption and emission spectra. We used this code to calculate equivalent width measurements, which provide the foundation of the analysis, from our spectra. We test the accuracy of these measurements against simulated spectra as well as manual equivalent width measurements of five stellar spectra over a range of signal-to-noise values and a set of long slit emission spectra. We find that Robospect accurately matches both the synthetic and manual measurements, with scatter consistent with the expectations based on the data quality and the results of Cayrel (1988). In Chapter 3, we present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the CASH project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R ~15,000) and corresponding high-resolution (R~35,000) Magellan MIKE spectra. The stars span a metallicity range from [Fe/H] from -2.9 to -3.9, including four new stars with [Fe/H]<-3.7. These pilot sample stars are the most metal-poor ([Fe/H]≲-3.0) of the brightest stars included in CASH and are used to calibrate a newly-developed, automated stellar parameter and abundance determination pipeline. This code is used for the entire CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum. We find four stars to be carbon-enhanced metal-poor (CEMP) stars, confirming the trend of increasing [C/Fe] abundance ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]<-3. We also find four neutron-capture enhanced stars in the sample, one of which has [Eu/Fe] of 0.8 with clear r-process signatures. In Chapter 4, we present stellar parameters and abundances for the full CASH sample of 263 metal-poor halo star candidates derived from snapshot spectra obtained with the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory. We determine abundance statistics and trends for 16 elements over the full sample. We identify astrophysically-interesting stars that merit further investigation, including carbon-enhanced metal-poor stars, neutron-capture element enhanced stars, and extremely metal-poor stars. We note one Li giant with a unique abundance pattern. In Chapter~5 we present a detailed abundance analysis of 23 elements for a newly discovered carbon-enhanced metal-poor (CEMP) star, HE 0414-0343, from the CASH sample. Its spectroscopic stellar parameters are T_eff=4863 ,K, log g=1.25, ξ=20 km/s, and [Fe/H]=-2.24. Radial velocity measurements covering seven years indicate HE 0414-0343 to be a binary. HE 0414-0343 has [C/Fe]=1.44 and is strongly enhanced in neutron-capture elements but its abundances cannot be reproduced by a solar-type s-process pattern alone. It could be classified as ``CEMP-r/s'' star but we find that no r-process component is required as explanation of this and other similar stars classified as ``CEMP-s'' and ``CEMP-r/s'' stars. Rather, based on comparisons with AGB star nucleosynthesis models, we suggest a new physically-motivated classification scheme, especially for the still poorly-understood ``CEMP-r/s'' stars. Importantly, it reflects the continuous transition between these so-far distinctly treated subgroups: CEMP-sA, CEMP-sB, and CEMP-sC. The [Y/Ba] ratio parameterizes the classification and can thus be used to classify any future such stars. Possible causes for the transition include the number of thermal pulses the AGB companion underwent and the effect of different AGB star masses on their nucleosynthetic yields. We then speculate that higher AGB masses may explain ``CEMP-r/s'' or now CEMP-sB and CEMP-sC stars, whereas less massive AGB stars would account for ``CEMP-s'' or CEMP-sA stars. Based on a limited set of AGB models, we suggest the abundance signature of HE~0414$-$0343 to have come from a >1.3 M_⊙ mass AGB star and a late-time mass transfer, thereby making it a CEMP-sC star. Finally, in Chapter 6, we summarize our results and provide future directions for the project. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/26869 |
Date | 23 October 2014 |
Creators | Hollek, Julie Ann |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0033 seconds