Neste trabalho, utilizamos o desenvolvimento recente do método DFT/LDA-1/2 para cálculos de estados excitados em materiais. Começamos com um resumo da teoria do funcional da densidade (DFT) e incluímos uma introdução ao método LDA-1/2 para cálculos de excitações em sólidos. Na compilação dos resultados esperamos ter demonstrado a utilidade do LDA-1/2 para cálculos de alinhamentos de bandas em junções semicondutor/semicondutor e semicondutor/isolante. A aplicação do método envolve o conhecimento da química básica dos sistemas. Para tanto, escolhemos sistemas importantes para diversas aplicações, e cujos modelos de simulação estão o limite ou fora do alcance de metodologias que envolvem alto custo computacional, mas que foram bem caracterizados experimentalmente. Concentramos nossas ações no estudo da capacidade preditiva do LDA-1/2 para alinhamentos de bandas, os chamados band offsets, particularmente importantes para a micro e optoeletrônica. Quando não foi possível compararmos nossos resultados com o experimento, procuramos a comparação com métodos estado-da-arte como GW. Bons resultados foram obtidos para band gaps e band offsets de interfaces A1As/GaAs, Si/SiO2, A1N/GaN e CdSe/CdTe, que representam os diferentes tipos de jun_c~oes poss__veis, com (e.g. A1As/GaAs, A1N/GaN) e sem (e.g. Si/SiO2, CdSe/CdTe) ^anions omuns, com (e.g. A1As/GaAs) e sem (e.g. CdSe/CdTe, Si/SiO2) casamento de parâmetros de rede e diferentes tipos de alinhamentos (\"straddling\", e.g. A1As/GaAs ou \"staggered\"e.g. CdSe/CdTe). Analisamos de maneira sistemática o comportamento do entorno do bandgap ao longo da interface, verificando plano a plano atômico o comportamento das bordas de valência e condução com LDA-1/2 em comparação com o LDA, ou comparando diferentes modelos dentro do LDA-1/2, como o caso do CdSe/CdTe e do Si/SiO2. Para o caso A1As/GaAs, aproveitamos o casamento de parâmetros de rede dos semicondutores constituintes e tentamos um modelo de interface de ligas A1xGa1-x As/GaAs para estudar a variação de valência, condução e bandgap em função da composição x. No AlN/GaN, estudamos também os offsets com as contribuições dos orbitais separadamente. Em todos os casos o LDA-1/2 levou-nos a resultados interessantes com modelos simples. A exploração de novas fronteiras de aplicação do método fez-se necessária com a diminuição da dimensionalidade dos sistemas, de 3D (bulk ) para 2D (interfaces) e depois para 1D, ou seja, _os quânticos (\"nanofios\"). Nosso material de estudo para os foi o ZnO que, além da motivação oriunda de conhecidas aplicações em optoeletrônica, apresenta desafios para simulações bulk com qualquer método, e que foi abordado com certo sucesso usando o LDA-1/2 anteriormente, sendo que para fios quânticos encontramos resultados interessantes em geometrias triangulares que facilitaram os modelos. Calculamos o bandgap ZnO bulk e de nanofios passivados e não passivados com hidrogênios usando LDA e LDA-1/2 sem polarização de spin. As estruturas de bandas e o bandgap como função do diâmetro do ano_o foram calculados e ajustes com funções de decaimento foram feitos para comparação, por extrapolação, dos bandgaps com valores experimentais. Foi possível comparar nossos resultados de fios com o bulk, e predizer uma faixa de variaação de bandgaps que os experimentais podem encontrar para nanofios triangulares de ZnO. Também foi feita análise de energias de confinamento em fios quânticos de ZnO, comparando o LDA com LDA-1/2. Finalmente, mostramos os resultados de uma oportunidade de aplicação do método a um material com defeitos, recentemente descoberto e promissor, e com enorme mercado potencial em fotocatálise, o Ti1-O4N. Nosso trabalho envolveu a aplicação do LDA-1/2 a um problema muito desafiador, e.g. a geração de energia limpa, especificamente a separação da molécula de água para produção de hidrogênio. O desafio maior vem da dificuldade de predição de bandgaps teoricamente, em particular para sistemas grandes como é o caso de modelos atomísticos com defeitos, devido aos altos custos computacionais envolvidos. Tais dificuldades forçam os pesquisadores a usarem parâmetros ajustáveis ou métodos semi-empíricos, ou modelos simplificados demais para descrever precisamente resultados experimentais. Isto dificulta o estudo dos sistemas fotocatalíticos potencialmente eficientes e que não foram ainda caracterizados ou otimizados. O LDA-1/2 é aqui validado para esta classe de materiais, abrindo assim a oportunidade para estudar sistemas mais realísticos e complexos para cálculos ainda mais precisos, particularmente para geração de energia limpa. Em particular, modelamos o TiO2 na estrutura rutile com nitrogênio substitucional, cuja estrutura eletrônica é ainda debatida. Foi a primeira aplicação do LDA-1/2 a sistemas com algum tipo de defeito, com ótimos resultados para o novo sistema Ti1- _O4N com vacâncias de Ti. / In this work, we used the recent development of DFT/LDA-1/2 method for calculations of excited states in materials. We begin with a summary of the density functional theory (DFT) and included an introduction to the method LDA-1/2 for calculations of excitations in solids. In compiling the results we hope to have demonstrated the usefulness of the LDA-1/2 for calculating alignments of bands at junctions semiconductor / semiconductor and semiconductor / insulator. The method involves the knowledge of basic chemical systems. To do this we chose systems important for several applications, and simulation models which are the limit or beyond the reach of methodologies involving high computational cost, but have been well characterized experimentally. We focus our actions in the study of the predictive capability of the LDA-1/2 for alignments of bands, the band called offsets, particularly important for micro and optoelectronics. When it was not possible to compare our results with experiment, we compared the methods with state of the art as GW. Good results were obtained for band gaps and band offsets of interfaces A1As/GaAs, Si/SiO2, A1N/GaN and CdSe / CdTe, which represent the different types of jun_c poss__veis-tions, with (eg A1As/GaAs, A1N/GaN) and without (eg Si/SiO2, CdSe / CdTe) ^ omuns anions with (eg A1As/GaAs) and without (eg CdSe / CdTe, Si/SiO2) matching network parameters and different types of alignments (\"straddling\" eg A1As/GaAs or \"staggered\" eg CdSe / CdTe). Systematically analyze the behavior of the environment along the interface bandgap, plane by plane scanning behavior of the edges atomic valence and conduction with LDA-half in comparison with LDA, or comparing templates within the LDA-1 / 2, as the case of CdSe / CdTe and Si/SiO2. For the case A1As/GaAs, we take the marriage of network parameters of semiconductor components and try an interface model alloys A1xGa1-x As / GaAs to study the variation of valence, conduction and bandgap as a function of composition x. In the AlN / GaN, we also studied the offsets with the contributions of the orbitals separately. In all cases the LDA-half led us to interesting results from simple models. The exploration of new frontiers of the method was necessary to decrease the dimensionality of the systems, the 3D (bulk) for 2D (interfaces) and then to 1D, ie, quantum _os (\"nanowires\"). Our study material for the ZnO was that, apart from the motivation coming from known applications in optoelectronics, presents challenges for bulk simulations with any method, and that was addressed with some success using the LDA-half earlier, and for wireless find interesting results in quantum triangular geometries that facilitated models. We calculate the bandgap and bulk ZnO nanowires passivated and not passivated with hydrogen using LDA and LDA-1/2 without spin polarization. The bandgap structures and strips as a function of the diameter of ano_o adjustments are calculated and decay functions for comparison were made by extrapolation of the bandgaps with experimental values. It was possible to compare our results with the bulk of wires, and predict a range of bandgaps that variaação can find experimental triangular ZnO nanowires. It was also made analysis of energy confinement in ZnO quantum wires, comparing LDA with LDA-1/2. Finally, we show the results of an opportunity to apply the method to a material with defects, newly discovered and promising, and with huge market potential in photocatalysis, the Ti1-O4N. Our work involved the application of LDA-1/2 to a very challenging problem, eg the generation of clean energy, specifically the separation of the water molecule for hydrogen production. The main challenge has been the difficulty of predicting bandgaps theoretically, in particular for large systems such as the model atomistic defects because of the high computational costs involved. These difficulties force the researchers to use adjustable parameters or semi-empirical methods, or other simplified models to accurately describe experimental results. This complicates the study of potentially efficient photocatalytic systems which have not yet been characterized or optimized. The LDA-1/2 is here validated for this class of materials, thus opening the opportunity to study more realistic and complex systems for more accurate calculations, particularly for clean energy generation. In particular, we modeled the structure of TiO2 in the rutile with substitutional nitrogen, whose electronic structure is still debated. It was the first application of the LDA-1/2 systems with some kind of defect, with excellent results for the new system Ti1-_O4N with Ti vacancies.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-02052012-132110 |
Date | 13 December 2011 |
Creators | Ribeiro Junior, Mauro Fernando Soares |
Contributors | Ferreira, Luiz Guimaraes, Fonseca, Leonardo Ribeiro de Carvalho e |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0039 seconds