Return to search

Statistical and geometric methods for visual tracking with occlusion handling and target reacquisition

Computer vision is the science that studies how machines understand scenes and automatically make decisions based on meaningful information extracted from an image or multi-dimensional data of the scene, like human vision. One common and well-studied field of computer vision is visual tracking. It is challenging and active research area in the computer vision community. Visual tracking is the task of continuously estimating the pose of an object of interest from the background in consecutive frames of an image sequence. It is a ubiquitous task and a fundamental technology of computer vision that provides low-level information used for high-level applications such as visual navigation, human-computer interaction, and surveillance system.

The focus of the research in this thesis is visual tracking and its applications. More specifically, the object of this research is to design a reliable tracking algorithm for a deformable object that is robust to clutter and capable of occlusion handling and target reacquisition in realistic tracking scenarios by using statistical and geometric methods. To this end, the approaches developed in this thesis make extensive use of region-based active contours and particle filters in a variational framework. In addition, to deal with occlusions and target reacquisition problems, we exploit the benefits of coupling 2D and 3D information of an image and an object.

In this thesis, first, we present an approach for tracking a moving object based on 3D range information in stereoscopic temporal imagery by combining particle filtering and geometric active contours. Range information is weighted by the proposed Gaussian weighting scheme to improve segmentation achieved by active contours. In addition, this work present an on-line shape learning method based on principal component analysis to reacquire track of an object in the event that it disappears from the field of view and reappears later. Second, we propose an approach to jointly track a rigid object in a 2D image sequence and to estimate its pose in 3D space. In this work, we take advantage of knowledge of a 3D model of an object and we employ particle filtering to generate and propagate the translation and rotation parameters in a decoupled manner. Moreover, to continuously track the object in the presence of occlusions, we propose an occlusion detection and handling scheme based on the control of the degree of dependence between predictions and measurements of the system. Third, we introduce the fast level-set based algorithm applicable to real-time applications. In this algorithm, a contour-based tracker is improved in terms of computational complexity and the tracker performs real-time curve evolution for detecting multiple windows. Lastly, we deal with rapid human motion in context of object segmentation and visual tracking. Specifically, we introduce a model-free and marker-less approach for human body tracking based on a dynamic color model and geometric information of a human body from a monocular video sequence. The contributions of this thesis are summarized as follows:
1. Reliable algorithm to track deformable objects in a sequence consisting of 3D range data by combining particle filtering and statistics-based active contour models.
2. Effective handling scheme based on object's 2D shape information for the challenging situations in which the tracked object is completely gone from the image domain during tracking.
3. Robust 2D-3D pose tracking algorithm using a 3D shape prior and particle filters on SE(3).
4. Occlusion handling scheme based on the degree of trust between predictions and measurements of the tracking system, which is controlled in an online fashion.
5. Fast level set based active contour models applicable to real-time object detection.
6. Model-free and marker-less approach for tracking of rapid human motion based on a dynamic color model and geometric information of a human body.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/43582
Date17 January 2012
CreatorsLee, Jehoon
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0021 seconds