Return to search

Model-based Assessment of Heat Pump Flexibility

Today's energy production is changing from scheduled to intermittent generation due to the increasing energy injection from renewable sources. This alteration requires flexibility in energy generation and demand. Electric heat pumps and thermal storages were found to have a large potential to provide demand flexibility which is analysed in this work. A three-fold method is set up to generate thermal load profiles, to simulate heat pump pools and to assess heat pump flexibility. The thermal profile generation based on a combination of physical and behavioural models is successfully validated against measurement data. A randomised system sizing procedure was implemented for the simulation of heat pump pools. The parameter randomisation yields correct seasonal performance factors, full load hours and average operation cycles per day compared to 87 monitored systems. The flexibility assessment analysis the electric load deviation of representative heat pump pool in response to 5 different on / off signals. The flexibility is induced by the capacity of thermal storages and analysed by four parameters. Generally, on signals are more powerful than off signals. A generic assessment by the ambient temperature yield that the flexibility is highest for heating days and the activated additional space heating storage: Superheating of the storage to the maximal temperature provides a flexible energy of more than 400 kWh per 100 heat pumps in a temperature range between -10 and +13 °C.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-284083
Date January 2016
CreatorsWolf, Tobias
PublisherUppsala universitet, Fasta tillståndets fysik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationMSc ET

Page generated in 0.0014 seconds