Return to search

Effect of sulphate impurity in chromic acid anodizing of aluminium and aluminium alloy

In this work, the nucleation and growth of pores in anodic films formed on aluminium in chromic acid and the effect of low levels of sulphate impurity in the anodizing bath on the formation of the films on aluminium and AA 2024 alloy are investigated. The sulphate concentrations considered include levels within specified limits for industrial processing. The anodizing is carried out either potentiostatically or by stepping the voltage. The films are examined by scanning electron microscopy, transmission electron microscopy and atomic force microscopy to determine the pore spacing, pore population densities, pore diameters and film thicknesses. Film compositions were determined using energy-dispersive X-ray spectroscopy, Rutherford backscattered microscopy and nuclear reaction analysis. In order to investigate the mechanism of pore formation, two tracer methods are employed. In one method, anodic films are formed first in an arsenate electrolyte in the second method, a tungsten tracer band deposited by magnetron sputtering. The behaviours of arsenic and the tungsten are investigated during the subsequent anodizing in chromic acid. The results suggest that the initiation and growth of pores in occurred as a result of electric field assisted chemical dissolution. The effect of sulphate impurity in the chromic acid is investigated using electrolytes with different sulphate content. In the initial stages of anodizing aluminium at 100 V, sulphate impurity at a level of 38 ppm in the chromic acid is shown to lead to significant incorporation of sulphate ions into the anodic film, a lower current density, a smaller cell size and less feathering of the pore walls. In addition, the efficiency of film formation is increased. In later stages of anodizing, the growth of larger pores and cells, leads to a duplex film morphology, with finer pores in the outer region. The change in pore size correlates with a reduction in the incorporation of sulphate into the film. From the results of sequential anodizing experiments, it is suggested that incorporated sulphate ions generate a space charge layer, which has an important role in determining the current density. The effects of higher sulphate concentrations up to 3000 ppm are investigated, which are shown to significantly affect the current density and the pore diameter. Anodizing of aluminium and AA 2024 alloy was also carried out according to industrial practice. The results show that there is significant effect of sulphur impurity on the film thickness. Corrosion tests in 3.5 % NaCl solution for the alloy after anodizing in low (smaller or equal to 1.5 ppm) and high (~38 ppm) sulphate-containing chromic acid electrolytes demonstrate a better corrosion resistance with films formed in the latter electrolyte.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:728104
Date January 2016
CreatorsElabar, Dawod
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.research.manchester.ac.uk/portal/en/theses/effect-of-sulphate-impurity-in-chromic-acid-anodizing-of-aluminium-and-aluminium-alloy(ec562f6a-6bc9-4bb4-9eee-468d539f90a2).html

Page generated in 0.0021 seconds