Return to search

Learning stationary tasks using behavior trees and genetic algorithms

The demand for collaborative, easy to use robots has increased during the last decades in hope of incorporating the use of robotics in smaller production scales, with easier and faster programming. Artificial intelligence (AI) and Machine learning (ML) are showing promising potential in robotics and this project has attempted to automatically solve a specific assembly task with Behavior trees (BTs). BTs can be used to elegantly divide a problem into different subtasks, while being modular and easy to modify. The main focus is put towards developing a Genetic algorithm (GA), that uses the fundamentals of biological evolution to produce BTs that solves the problem at hand. As a comparison to the GA result, a so-called Automated planner was developed to solve the problem and produce a benchmark BT. With a realistic physics simulation, this project automatically generated BTs that builds a tower of Duplo-like bricks and achieved successful results. The results produced by the GA showed a variety of possible solutions, a portion resembling the automated planner's results but also alternative, perhaps more elegant, solutions. As a conclusion, the approach used in this project shows promising signs and has many possible improvements for future research.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-415121
Date January 2020
CreatorsEdin, Martin
PublisherUppsala universitet, Avdelningen för systemteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC F, 1401-5757 ; 20039

Page generated in 0.0018 seconds