The present thesis deals with fault impact mitigation in grid connected converters used for High Voltage Direct Current transmission. Certain critical fault cases require additional obstructing protection actions to ease the impact on the converter valves. DC sided faults drives high fault currents through the converters. Single phase to ground faults at the converter AC bus results in overvoltages across the converter valve arms. The phenomenon of these faults are described both for symmetric and asymmetric configurations. Different available solutions are explained and evaluated. Simulations in PSCAD/EMTDC show the impact of the protection measures. A three phase short circuit introduced on the tertiary winding of the transformer is an effective temporary measure against the destructive fault cases. It is shown in this report that a tertiary shortcircuit will greatly reduce the overvoltages after converter bus faults and redirect a large part of the fault currents after DC faults. With the lower voltage on the tertiary winding, it is a suitable connection point for short circuit devices.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-107494 |
Date | January 2012 |
Creators | OdnegÄrd, Joakim |
Publisher | KTH, Elektrisk energiomvandling |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | EES Examensarbete / Master Thesis ; XR-EE-E2C 2012:013 |
Page generated in 0.0078 seconds