Return to search

Electrical Stimulation Based Statistical Calibration Model For MEMS Accelerometer And Other Sensors

abstract: Micro Electro Mechanical Systems (MEMS) based accelerometers are one of the most commonly used sensors out there. They are used in devices such as, airbags, smartphones, airplanes, and many more. Although they are very accurate, they degrade with time or get offset due to some damage. To fix this, they must be calibrated again using physical calibration technique, which is an expensive process to conduct. However, these sensors can also be calibrated infield by applying an on-chip electrical stimulus to the sensor. Electrical stimulus-based calibration could bring the cost of testing and calibration significantly down as compared to factory testing. In this thesis, simulations are presented to formulate a statistical prediction model based on an electrical stimulus. Results from two different approaches of electrical calibration have been discussed. A prediction model with a root mean square error of 1% has been presented in this work. Experiments were conducted on commercially available accelerometers to test the techniques used for simulations. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2020

Identiferoai:union.ndltd.org:asu.edu/item:62830
Date January 2020
ContributorsBassi, Ishaan (Author), Ozev, Sule (Advisor), Christen, Jennifer Blain (Committee member), Vasileska, Dragica (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeMasters Thesis
Format50 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0019 seconds