The aim of this thesis was to verify the indicated occurrence of acrylamide formation in heating of food, to identify factors affecting the formation, and to identify important sources of acrylamide exposure from food. As a prerequisite for the studies, gas- and liquid-chromatographic methods with mass spectrometric detection were developed for the analysis of acrylamide in food. The developed methods showed a high correlation coefficient (0.99), high sensitivity and reproducibility. Acrylamide was demonstrated to occur in heated food products, with unexpectedly high levels in potato products (up to mg/kg level in potato crisps) and in beetroot. The identity of acrylamide was confirmed by the developed methods. With potato as a food model, different factors affecting the acrylamide formation were tested. It was shown that the addition of asparagine and fructose, as well as heating temperature and time had a large impact on the formation. Other factors affecting the acrylamide content were pH, addition of other amino acids apart from asparagine, protein and other reducing sugars. No significant effects were observed from addition of neither antioxidant nor radical initiators. It was discovered that acrylamide could be formed during heating of biological materials similar to food, also at temperatures below 100 ˚C. Furthermore, it was demonstrated that a fraction of acrylamide evaporates during heating, similar to conditions for cooking in household kitchens, and during dry matter determinations in laboratories (65-130 ˚C). This constitutes an earlier unobserved source of exposure to acrylamide. The method for extraction of food was studied with regard to yield of acrylamide. It was shown that the yield at pH ≥12 increases 3 - 4 times compared to normal water extraction for some foods products. Extraction at acidic pH or with enzymatic treatment was also tested, showing no effect on yield. In a study with mice the bioaviability of acrylamide extracted with the normal water extration and at alkaline pH was compared. It was shown that the extra acrylamide released at alkaline pH gave insignificant contributions to the in vivo dose, measured by hemoglobin adducts.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-700 |
Date | January 2005 |
Creators | Eriksson, Sune |
Publisher | Stockholms universitet, Institutionen för miljökemi, Stockholm : Institutionen för miljökemi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds