Return to search

Climate Driven Glacial Retreat, Surface Uplift, and the Rheological Structure of Iceland: Insights from cGPS Geodesy

In Iceland, glaciers cover approximately 11% of the land surface and comprise the country's largest reservoir of freshwater. Increases in summer temperatures since the mid-1980s have led to rapid mass loss from the Icelandic ice caps of 9.5-11.4 Gt/yr, and continuously operating GPS stations nationwide have recorded rapid and accelerating surface uplift. Understanding the behavior of Icelandic ice caps-and their relationship to surface uplift, which is modulated by the rheological structure of the crust and upper mantle-has important implications for water resource management and geohazards analysis. The goals of this study are twofold. First, we aim improve the current estimates of glacial isostatic adjustment (GIA)-related uplift in Iceland and to examine if and how uplift rates have changed over the last several decades. Secondly, we explore the utility of motion recorded by continuously operating Global Positioning System stations (cGPS) as an independent measure of ice cap mass variation over both decadal and annual time scales. We take advantage of the now longstanding cGPS network in Iceland and consider position time series from 62 stations across the entire island. Observations made by cGPS stations from 1995-2014.7 show a broad region of rapid uplift in central Iceland with near zero uplift observed along the coastal regions to the north and west. The most rapid uplift and uplift accelerations occur near the center of the island, between the Vatnajökull and Hofsjökull ice caps, with rates exceeding 30 mm/yr and accelerations of 1-2 mm/yr². Statistically significant uplift and uplift accelerations are recorded at 27 of the 62 cGPS stations, and estimates for the timing of uplift initiation correlate with Arctic warming trends and observations of increasing summer temperatures since the mid-1980s. These results represent a significant improvement over previous uplift estimates and indicate a likely relationship between accelerated ice cap melting and contemporaneous changes in uplift rates. Incorporating cGPS-recorded information about modern-day uplift rates affects estimates of mantle viscosity. Ice cap thinning rates are computed by a weighted least squares estimation scheme utilizing cGPS-derived secular uplift rates and accelerations and Green's functions for an elastic layer over a Maxwell viscoelastic half-space. We test a range of viscosities from 8 x 10¹⁷ and 1 x 10²⁰ Pa·s and find that thinning rates computed with low viscosities between 2 x 10¹⁸ and 1 x 10¹⁹ Pa·s match independently derived ice cap thinning rates best, in accordance with previous upper mantle viscosity estimates. Similar estimation techniques demonstrate the utility of cGPS to provide a seasonal mass variation time series as a potential low-cost compliment to traditional field-based mass balance measurements. We use estimates of secular site velocity and acceleration to reduce the time series and focus only on the annual periodic motion. The increased temporal resolution afforded by the daily cGPS position estimates recovers the interannual variability in the timing and magnitude of accumulation and melt seasons with a small RMS reduction relative to a sinusoidal model. We also find we are able to identify of the effects of both ice cap insulation as well as reduced surface albedo following volcanic eruptions.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/621566
Date January 2016
CreatorsCompton, Kathleen, Compton, Kathleen
ContributorsBennett, Richard, Bennett, Richard, Beck, Susan, Pelletier, Jon, Richardson, Randall, Zandt, George
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0022 seconds