The purpose of this research is to reduce the amount of waste generated in Department of Energy nuclear cleanup efforts currently underway. Due to the highly radioactive nature of the waste, any fluid that contacts the waste must then be treated and processed as waste. To minimize the fluids contaminated during flushing, this research aims to provide a basis for the flushing of High Level Waste (HLW) pipelines. Edgar Plastic Kaolin (EPK) with solid particles of a nominal diameter of 1 micron was used as a simulacrum for HLW. An Eulerian-Eulerian simulation built in StarCCM+ software, with a k-ω turbulence model, and a drag coefficient to connect the solid EPK phase with the liquid phase, was used to simulate the flushing of pipelines. Velocities from 3 ft/s to 10 ft/s were investigated to find the highest volumetric efficiency, and it was determined that 10 ft/s was the optimal flushing velocity.
Identifer | oai:union.ndltd.org:fiu.edu/oai:digitalcommons.fiu.edu:etd-5353 |
Date | 08 February 2019 |
Creators | Coverston, Joseph S |
Publisher | FIU Digital Commons |
Source Sets | Florida International University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | FIU Electronic Theses and Dissertations |
Page generated in 0.0888 seconds