This dissertation can be broadly divided into two independent parts. The first three chapters analyse issues related to temporal and contemporaneous aggregation of econometric models. The fourth chapter contains an application of Bayesian techniques to investigate whether the post transition fiscal policy of Poland is sustainable in the long run and consistent with an intertemporal budget constraint.
Chapter 1 surveys the econometric methodology of temporal aggregation for a wide range of univariate and multivariate time series models.
A unified overview of temporal aggregation techniques for this broad class of processes is presented in the first part of the chapter and the main results are summarized. In each case, assuming to know the underlying process at the disaggregate frequency, the aim is to find the appropriate model for the aggregated data. Additional topics concerning temporal aggregation of ARIMA-GARCH models (see Drost and Nijman, 1993) are discussed and several examples presented. Systematic sampling schemes are also reviewed.
Multivariate models, which show interesting features under temporal aggregation (Breitung and Swanson, 2002, Marcellino, 1999, Hafner, 2008), are examined in the second part of the chapter. In particular, the focus is on temporal aggregation of VARMA models and on the related concept of spurious instantaneous causality, which is not a time series property invariant to temporal aggregation. On the other hand, as pointed out by Marcellino (1999), other important time series features as cointegration and presence of unit roots are invariant to temporal aggregation and are not induced by it.
Some empirical applications based on macroeconomic and financial data illustrate all the techniques surveyed and the main results.
Chapter 2 is an attempt to monitor fiscal variables in the Euro area, building an early warning signal indicator for assessing the development of public finances in the short-run and exploiting the existence of monthly budgetary statistics from France, taken as "example country".
The application is conducted focusing on the cash State deficit, looking at components from the revenue and expenditure sides. For each component, monthly ARIMA models are estimated and then temporally aggregated to the annual frequency, as the policy makers are interested in yearly predictions.
The short-run forecasting exercises carried out for years 2002, 2003 and 2004 highlight the fact that the one-step-ahead predictions based on the temporally aggregated models generally outperform those delivered by standard monthly ARIMA modeling, as well as the official forecasts made available by the French government, for each of the eleven components and thus for the whole State deficit. More importantly, by the middle of the year, very accurate predictions for the current year are made available.
The proposed method could be extremely useful, providing policy makers with a valuable indicator when assessing the development of public finances in the short-run (one year horizon or even less).
Chapter 3 deals with the issue of forecasting contemporaneous time series aggregates. The performance of "aggregate" and "disaggregate" predictors in forecasting contemporaneously aggregated vector ARMA (VARMA) processes is compared. An aggregate predictor is built by forecasting directly the aggregate process, as it results from contemporaneous aggregation of the data generating vector process. A disaggregate predictor is a predictor obtained from aggregation of univariate forecasts for the individual components of the data generating vector process.
The econometric framework is broadly based on Lütkepohl (1987). The necessary and sufficient condition for the equality of mean squared errors associated with the two competing methods in the bivariate VMA(1) case is provided. It is argued that the condition of equality of predictors as stated in Lütkepohl (1987), although necessary and sufficient for the equality of the predictors, is sufficient (but not necessary) for the equality of mean squared errors.
Furthermore, it is shown that the same forecasting accuracy for the two predictors can be achieved using specific assumptions on the parameters of the VMA(1) structure.
Finally, an empirical application that involves the problem of forecasting the Italian monetary aggregate M1 on the basis of annual time series ranging from 1948 until 1998, prior to the creation of the European Economic and Monetary Union (EMU), is presented to show the relevance of the topic. In the empirical application, the framework is further generalized to deal with heteroskedastic and cross-correlated innovations.
Chapter 4 deals with a cointegration analysis applied to the empirical investigation of fiscal sustainability. The focus is on a particular country: Poland. The choice of Poland is not random. First, the motivation stems from the fact that fiscal sustainability is a central topic for most of the economies of Eastern Europe. Second, this is one of the first countries to start the transition process to a market economy (since 1989), providing a relatively favorable institutional setting within which to study fiscal sustainability (see Green, Holmes and Kowalski, 2001). The emphasis is on the feasibility of a permanent deficit in the long-run, meaning whether a government can continue to operate under its current fiscal policy indefinitely.
The empirical analysis to examine debt stabilization is made up by two steps.
First, a Bayesian methodology is applied to conduct inference about the cointegrating relationship between budget revenues and (inclusive of interest) expenditures and to select the cointegrating rank. This task is complicated by the conceptual difficulty linked to the choice of the prior distributions for the parameters relevant to the economic problem under study (Villani, 2005).
Second, Bayesian inference is applied to the estimation of the normalized cointegrating vector between budget revenues and expenditures. With a single cointegrating equation, some known results concerning the posterior density of the cointegrating vector may be used (see Bauwens, Lubrano and Richard, 1999).
The priors used in the paper leads to straightforward posterior calculations which can be easily performed.
Moreover, the posterior analysis leads to a careful assessment of the magnitude of the cointegrating vector. Finally, it is shown to what extent the likelihood of the data is important in revising the available prior information, relying on numerical integration techniques based on deterministic methods.
Identifer | oai:union.ndltd.org:BICfB/oai:ulb.ac.be:ETDULB:ULBetd-03302009-104451 |
Date | 02 June 2009 |
Creators | Silvestrini, Andrea |
Contributors | Shadman Mehta, Fatemeh, Paindaveine, Davy, Mélard, Guy, Lütkepohl, Helmut, Hafner, Christian M., Bauwens, Luc, Veredas, David |
Publisher | Universite Libre de Bruxelles |
Source Sets | Bibliothèque interuniversitaire de la Communauté française de Belgique |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-03302009-104451/ |
Rights | mixed, J'accepte que le texte de la thèse (ci-après l'oeuvre), sous réserve des parties couvertes par la confidentialité, soit publié dans le recueil électronique des thèses ULB. A cette fin, je donne licence à ULB : - le droit de fixer et de reproduire l'oeuvre sur support électronique : logiciel ETD/db - le droit de communiquer l'oeuvre au public Cette licence, gratuite et non exclusive, est valable pour toute la durée de la propriété littéraire et artistique, y compris ses éventuelles prolongations, et pour le monde entier. Je conserve tous les autres droits pour la reproduction et la communication de la thèse, ainsi que le droit de l'utiliser dans de futurs travaux. Je certifie avoir obtenu, conformément à la législation sur le droit d'auteur et aux exigences du droit à l'image, toutes les autorisations nécessaires à la reproduction dans ma thèse d'images, de textes, et/ou de toute oeuvre protégés par le droit d'auteur, et avoir obtenu les autorisations nécessaires à leur communication à des tiers. Au cas où un tiers est titulaire d'un droit de propriété intellectuelle sur tout ou partie de ma thèse, je certifie avoir obtenu son autorisation écrite pour l'exercice des droits mentionnés ci-dessus. |
Page generated in 0.0028 seconds