Return to search

Selective Nanoparticles for Antimicrobial Therapies and MRI Diagnostics

Early diagnosis and treatment of an infection and the selectivity of the treatment method are three parameters, which if optimized will greatly enhance a patients prognosis. Thus these three components have been, and continue to be extensively studied. Advances in biosynthesis and nanofabriciation have provided researchers with new tools with which to improve diagnostic and therapeutic techniques. Of these, inorganic nanoparticles (NPs) have shown great promise. Metallic nanoparticles have been demonstrated to successfully serve as antimicrobials, platforms for the transportation of therapeutic molecules, CT and MRI contrast agents, and thermal ablation. The recent paradigm of theranostics proposes substances that serve both diagnostic as well as therapeutic functions. Metallic nanoparticles are well suited as substrates for multifunctional particles for several reasons including; offering high-density surface ligand conjugation, a reduction in payload degradation, a method of target transfection, and the possibility of controlled release. Additionally, metallic nanoparticles have the benefits of tunable morphologies, large surface area-to-volume ratios, physiologically robust chemistries, and ease of bulk synthesis. Furthermore, functional ligands bound to the NP surface and provide additional functionality such as enhanced solubility, selectivity, and antimicrobial efficacy. This report includes two studies which explore the synthesis and functionality of a theranostic conjugate nanoparticle. Studies were conducted to assess the development of a diagnostic antimicrobial nanoparticle (DAN) comprised of an iron oxide MRI contrast core, an antimicrobial colloidal silver shell, and a selective antimicrobial ceragenin surfactant (CSA-124). The composition of each component of the DAN has been characterized and its functionality evaluated. Preliminary data has suggested that such a theranostic nanoparticle can successfully be synthesized and its ability as an MRI contrast agent and antimicrobial shows great promise.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-06242013-140724
Date15 July 2013
CreatorsHoppens, Mark Andrew
ContributorsHayes, Daniel, Janes, Marlene, Sathivel, Subramaniam
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-06242013-140724/
Rightsrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0016 seconds