Title: Fluid-structure interaction of compressible flow Author: RNDr. Jaroslava Hasnedlová Department: Department of Numerical Mathematics, Institute of Applied Mathematics Supervisors: Prof. RNDr. Miloslav Feistauer, DrSc., Dr. h. c., Prof. Dr. Dr. h. c. Rolf Rannacher Supervisors' e-mail addresses: feist@karlin.mff.cuni.cz, rannacher@iwr.uni-heidelberg.de Abstract: The presented work is split into two parts. The first part is devoted to the theory of the discontinuous Galerkin finite element (DGFE) method for the space-time discretization of a nonstationary convection-diffusion initial-boundary value problem with nonlinear convection and linear diffusion. The DGFE method is applied sep- arately in space and time using, in general, different space grids on different time levels and different polynomial degrees p and q in space and time discretization. The main result is the proof of error estimates in L2 (L2 )-norm and in DG-norm formed by the L2 (H1 )-seminorm and penalty terms. The second part of the thesis deals with the realization of fluid-structure interaction problem of the compressible viscous flow with the elastic structure. The time-dependence of the domain occupied by the fluid is treated by the ALE (Arbitrary Lagrangian-Eulerian) method, when the compress- ible Navier-Stokes equations are formulated in...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:309475 |
Date | January 2012 |
Creators | Hasnedlová, Jaroslava |
Contributors | Feistauer, Miloslav, Křížek, Michal, Kozel, Karel, Rannacher, Rolf |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0022 seconds