För att hålla vattendragen och miljön rena, renas avloppsvattnet för att nå ett visst mått innan det släpps ut. Vi gjorde en fallstudie för att utvärdera metoderna som används för att behandla avloppsvatten i tre steg: primär, sekundär och tertiär i delstaten Texas, USA. Vi fann att olika fysikaliska, kemiska och biologiska bearbetningsmetoder används i stor utsträckning i dessa tre stadier. Även om en del av det slam som produceras i en avloppsvattenreningsanläggning utsätts för anaerob rötning (AD) process för att producera biogas, skickas majoriteten av dem till deponier som är ohållbart eftersom det skapar miljöföroreningar som läckage av näringsämnen, påverkar markens biologiska mångfald och släpper ut giftiga gaser och växthusgaser (GHG) som CH4, CO2, N2O. Den mest hållbara och prisvärda metoden för att behandla avloppsvatten är att använda mikroalger och några av fördelarna inkluderar: (i) använda CO2 som en kolkälla och generera syre, (ii) synergistiskt arbeta med aeroba bakterier som bryter ner organiska föroreningar i vatten på kort tid tid, (iii) högeffektiv bindning av överskott av kväve, fosfor och tungmetaller i avloppsvatten. Flera algbaserade reningsmetoder för avloppsvatten har utvecklats. Bland dem är reaktorn Rotating Algal Biofilm (RAB) en av de ledande behandlingsmetoderna som använder ett roterande band som består av syntetiska material som rör sig på en cylinder som är delvis nedsänkt i avloppsvatten. Algbiomassan kunde skördas från bältet genom att helt enkelt skrapa materialets yta. Vi uppskattade att ~1793,7 miljoner liter avloppsvatten behandlas dagligen i delstaten Texas och hypotetiskt om allt avloppsvatten behandlas med RAB skulle ~174,2 ton algbiomassa kunna produceras. Denna algbiomassa kan användas för AD-processen eller vidarebearbetas och fraktioneras till lipider, kolhydrater och proteiner med hjälp av etablerade hydrotermiska bearbetningsmetoder och användas som byggstenar för att producera bränslen, kemikalier och biomaterial. Tre scenarier har undersökts som belyser potentialen och fördelarna med att använda alger för att behandla avloppsvatten jämfört med konventionella metoder för avloppsvattenrening och hur denna övergång kommer att gynna ekonomin och miljön. / To keep the waterways and environment clean, wastewater is treated to reach a certain metric before they are discharged. We did a case study to evaluate the methods used to treat wastewater in three stages: primary, secondary, and tertiary in the state of Texas, United States. We found different physical, chemical, and biological processing methods are widely used in these three stages. Though some of the sludge produced in a wastewater treatment facility are subjected to anaerobic digestion (AD) process to produce biogas, the majority of them are sent to landfills which is unsustainable as it creates environmental pollution such as nutrient leaching, impacts soil biodiversity, and releases toxic gases and greenhouse gases (GHGs) such as CH4, CO2, N2O. The most sustainable and affordable method of treating wastewater is using microalgae and some of the advantages include: (i) use CO2 as a carbon source and generate oxygen, (ii) synergistically working with aerobic bacteria breaking down organic contaminants in water in a short period of time, (iii) highly efficient sequester of excess nitrogen, phosphorus, and heavy metals in wastewater. Several algal based wastewater treatment methods have been developed. Among them, the Rotating Algal Biofilm (RAB) reactor is one of the leading treatment methods that uses a rotating belt made up of synthetic materials moving on a cylinder partially submerged in wastewater. The algal biomass could be harvested from the belt by simply scrapping the material's surface. We estimated that ~1793.7 million gallons of wastewater are treated daily in the state of Texas and hypothetically if all the wastewater is treated using RAB ~174.2 tons of algal biomass could be produced. This algal biomass can be used for the AD process or further processed and fractionated to lipids, carbohydrates, and proteins using established hydrothermal processing methods and used as building blocks for producing fuels, chemicals, and biomaterials. Three scenarios have been investigated, highlighting the potential and benefits of using algae to treat wastewater compared to conventional wastewater treatment methods and how this transition will benefit the economy and environment.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-321242 |
Date | January 2022 |
Creators | Makkena, Gopi Raju |
Publisher | KTH, Kemiteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-CBH-GRU ; 2022:300 |
Page generated in 0.0028 seconds