L'objectif de cette thèse est d'étudier la possibilité de construire la fonction de corrélation à 2 points des amas de galaxies détectés dans les grands relevés optiques de galaxies. En particulier j’étudie l’impact de décalages vers le rouge dégradés car dérivés de données photométriques seules comme cela sera le cas pour les grands relevés à venir. J’ai utilisé des sous-échantillons d’amas sélectionnés dans les catalogues simulés. Les décalages vers le rouge des amas sont modélisés à partir des décalages exacts auxquels sont rajoutés un brui gaussien d’écart type σ (z=0) = 0.005 à 0.050. La fonction de corrélation dans l’espace direct est calculées par une méthode de déprojection. L’étude a été menée sur 4 intervalles de masse et 6 de redshift couvrant le domaine 0<z<2, en s’appuyant dans un premier temps sur les redshifts cosmologiques, puis sur les redshifts bruités. Un accroissement clair de l’amplitude de corrélation avec le redshift et la masse a été trouvé. L’évolution du paramètre de biais b(M,z) est en bon accord avec les prédictions théoriques. La relation d’échelle r0-d est aussi confirmée pour tous les échantillons jusqu’aux plus hauts redshifts et masses. Pour les échantillons bruités il est montré que la fonction de corrélation peut être reconstruite avec une précision de 10% pour σ (z=0) = 0.030. Les paramètres des ajustements ainsi que les biais reconstruits pour tous les bruits envisagés sont compatibles avec le cas non bruité dans un intervalle de 1σ. L’impact de la sélection des échantillons en richesse plutôt qu’en masse est aussi envisagé. Il est montré que Σ(>N200) est similaire à Σ(>masse), ainsi que la fonction de biais qui peut être reproduite à 1σ près. / I aim to study to which accuracy it is actually possible to recover the real-space to-point correlation function from cluster catalogues based on photometric redshifts. I make use of cluster sub-samples selected from a light-cone simulated catalogue. Photometric redshifts are assigned to each cluster by randomly extracting from a Gaussian distribution having a dispersion varied in the range σ (z=0) = 0.005 à 0.050. The correlation function in real-space is computed through deprojection method. Four masse ranges and six redshifts slices covering the redshift range 0<z<2 are investigated, using cosmological redshifts (Zc) and then using photometric redshifts. A clear increase of the corretation amplitude with redshift and mass is found. The evolution of the bias parameter b(M,z) is in fair agreement with the theoretical expectations. The existence of the r0-d relation up to the highest mass, highest redshift sample is tested and is confirmed. It is found that the real-space correlation function can be recovered within and accuracy of 10% for σ (z=0) = 0.030. The best-fit parameters as well as the bias for all σz, are within the 1σ uncertainty of the Zc sample.
Identifer | oai:union.ndltd.org:theses.fr/2016AZUR4152 |
Date | 16 December 2016 |
Creators | Sridhar, Srivatsan |
Contributors | Côte d'Azur, Maurogordato, Sophie, Benoist, Christophe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0017 seconds