O disco intervertebral é uma estrutura cuja função é receber, amortecer e distribuir o impacto das cargas impostas sobre a coluna vertebral. O aumento da idade e a postura adotada pelo indivíduo podem levar à degeneração do disco intervertebral. Atualmente, a Ressonância Magnética (RM) é considerada o melhor e mais sensível método não invasivo de avaliação por imagem do disco intervertebral. Neste trabalho foram desenvolvidos métodos quantitativos computadorizados para auxílio ao diagnóstico da degeneração do disco intervertebral em imagens de ressonância magnética ponderadas em T2 da coluna lombar, de acordo com a escala de Pfirrmann, uma escala semi-quantitativa, com cinco graus de degeneração. Os algoritmos computacionais foram testados em um conjunto de dados que consiste de imagens de 300 discos, obtidos de 102 indivíduos, com diferentes graus de degeneração. Máscaras binárias de discos segmentados manualmente foram utilizadas para calcular seus centroides, visando criar um ponto de referência para possibilitar a extração de atributos. Uma análise de textura foi realizada utilizando a abordagem proposta por Haralick. Para caracterização de forma, também foram calculados os momentos invariantes definidos por Hu e os momentos centrais para cada disco. A classificação do grau de degeneração foi realizada utilizando uma rede neural artificial e o conjunto de atributos extraídos de cada disco. Uma taxa média de acerto na classificação de 87%, com erro padrão de 6,59% e uma área média sob a curva ROC (Receiver Operating Characteristic) de 0,92 indicam o potencial de aplicação dos algoritmos desenvolvidos como ferramenta de apoio ao diagnóstico da degeneração do disco intervertebral. / The intervertebral disc is a structure whose function is to receive, absorb and transmit the impact loads imposed on the spine. Increasing age and the posture adopted by the individual can lead to degeneration of the intervertebral disc. Currently, Magnetic Resonance Imaging (MRI) is considered the best and most sensitive noninvasive method to imaging evaluation of the intervertebral disc. In this work were developed methods for quantitative computer-aided diagnosis of the intervertebral disc degeneration in MRI T2 weighted images of the lumbar column according to Pfirrmann scale, a semi-quantitative scale with five degrees of degeneration. The algorithms were tested on a dataset of 300 images obtained from 102 subjects with varying degrees of degeneration. Binary masks manually segmented of the discs were used to calculate their centroids, to create a reference point to enable extraction of attributes. A texture analysis was performed using the approach proposed by Haralick. For the shape characterization, invariant moments defined by Hu and central moments were also calculated for each disc. The rating of the degree of degeneration was performed using an artificial neural network and the set of extracted attributes of each disk. An average rate of correct classification of 87%, with standard error 6.59% and an average area under the ROC curve (Receiver Operating Characteristic) of 0.92 indicates the potential application of the algorithms developed as a diagnostic support tool to the degeneration of the intervertebral disc.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-30032017-091542 |
Date | 16 November 2016 |
Creators | Barreiro, Marcelo da Silva |
Contributors | Marques, Paulo Mazzoncini de Azevedo |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0023 seconds