This master's thesis explores the area of combinatorics concerned with counting mathematical objects with regards to symmetry. Two main theorems in this field are Burnside's Lemma and P'{o}lya's Enumeration Theoremfootnote{P'{o}lya's Enumeration Theorem is also known as Redfield--P'{o}lya's Theorem.}. Both theorems yield a formula that will count mathematical objects with regard to a group of symmetries. Burnside's Lemma utilizes the concept of orbits to count mathematical objects with regard to symmetry. As a result of the Burnside Lemma's reliance on orbits, implementation of the lemma can be computationally heavy. In comparison, P'{o}lya's Enumeration Theorem's use of the cycle index of a group eases the computational burden. In addition, P'{o}lya's Enumeration Theorem allows for the introduction of weights allowing the reader to tackle more complicated problems. Building from basic definitions taken from abstract algebra a presentation of the theory leading up to P'{o}lya's Enumeration Theorem is given, complete with proofs. Examples are given throughout to illustrate these concepts. Applications of this theory are present in the enumeration of graphs and chemical compounds.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ntnu-9826 |
Date | January 2009 |
Creators | Bjørge, Amanda Noel |
Publisher | Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, Institutt for matematiske fag |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds