Return to search

Generalizations of Quandles and their cohomologies

Quandles are distributive algebraic structures originally introduced independently by David Joyce and Sergei Matveev in 1979, motivated by the study of knots. In this dissertation, we discuss a number of generalizations of the notion of quandles. In the first part of this dissertation we discuss biquandles, in the context of augmented biquandles, a representation of biquandles in terms of actions of a set by an augmentation group. Using this representation we are able to develop a homology and cohomology theory for these structures.
We then introduce an n-ary generalization of the notion of quandles. We discuss a number of properties of these structures and provide a number of examples. Also discussed are methods of obtaining n-ary quandles through iteration of binary quandles, and obtaining binary quandles from n-ary quandles, along with a classification of low order ternary quandles. We build upon this generalization, introducing n-ary f-quandles, and similarly discuss examples, properties, and relations between the n-ary structures and their binary counter parts, as well as low order classification of ternary f-quandles. Finally we present cohomology theory for general n-ary f-quandles.

Identiferoai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-8496
Date05 July 2018
CreatorsGreen, Matthew J.
PublisherScholar Commons
Source SetsUniversity of South Flordia
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Theses and Dissertations

Page generated in 0.0022 seconds