Coronary stents are generally tubular-shaped expandable devices which function to hold open a segment of a blood vessel. They are particularly suitable for use to support and hold back a dissected lumen. This study aims to improve the existing designs of coronary stents through geometry design. This study focuses on the flexible mechanism and planar strut of a thin wall tubular stent to design a new type of coronary stent. A good coronary stent has to meet various requirements. First of all, a coronary stent has to be strong enough to support the wall of the blood vessel. Secondly, it has to be elastic enough. Thirdly, the longitudinal length shorten with dilatation should be as less as possible, otherwise it is difficult to implant precisely. Computer aided design software Pro Engineer is used to build the solid model and then CAE software ANSYS is used to analyze the dilatation of the new stent. After several modifications, a new type of stent with no longitudinal shortening is designed.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0726104-111723 |
Date | 26 July 2004 |
Creators | Chen, Yi-an |
Contributors | Innchyn, Her, Jao-Hwa Kuang, Ying-Chien, Tsai, Der-Min, Tsay |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0726104-111723 |
Rights | unrestricted, Copyright information available at source archive |
Page generated in 0.0018 seconds