Return to search

A cell level automated approach for quantifying antibody staining in immunohistochemistry images : a structural approach for quantifying antibody staining in colonic cancer spheroid images by integrating image processing and machine learning towards the implementation of computer aided scoring of cancer markers

Immunohistological (IHC) stained images occupy a fundamental role in the pathologist's diagnosis and monitoring of cancer development. The manual process of monitoring such images is a subjective, time consuming process that typically relies on the visual ability and experience level of the pathologist. A novel and comprehensive system for the automated quantification of antibody inside stained cell nuclei in immunohistochemistry images is proposed and demonstrated in this research. The system is based on a cellular level approach, where each nucleus is individually analyzed to observe the effects of protein antibodies inside the nuclei. The system provides three main quantitative descriptions of stained nuclei. The first quantitative measurement automatically generates the total number of cell nuclei in an image. The second measure classifies the positive and negative stained nuclei based on the nuclei colour, morphological and textural features. Such features are extracted directly from each nucleus to provide discriminative characteristics of different stained nuclei. The output generated from the first and second quantitative measures are used collectively to calculate the percentage of positive nuclei (PS). The third measure proposes a novel automated method for determining the staining intensity level of positive nuclei or what is known as the intensity score (IS). The minor intensity features are observed and used to classify low, intermediate and high stained positive nuclei. Statistical methods were applied throughout the research to validate the system results against the ground truth pathology data. Experimental results demonstrate the effectiveness of the proposed approach and provide high accuracy when compared to the ground truth pathology data.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:583028
Date January 2013
CreatorsKhorshed, Reema A. A.
ContributorsJiang, Jianmin; Phillips, Roger M.; Holton, Robert
PublisherUniversity of Bradford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10454/5763

Page generated in 0.002 seconds