Return to search

Synthesis and properties of oligonucleotides containing triazole backbone linkages and 2'-modifications for therapeutic applications

Antisense oligonucleotides are short strands of DNA, which bind to their complementary mRNA target to prevent protein translation. Although conceptually appealing, for their practical use as drugs, these oligonucleotides must have better cellular uptake, resistance to enzymatic degradation, and target selectivity. In this work, new synthetic chemistry is established to prepare a novel group of chemically modified oligonucleotides. The anionic phosphodiester backbone is partially replaced with a neutral triazole and, at the same time, the 2'-position of the ribose sugar is functionalised with pyrene, anthraquinone, or guanidine moieties. Being unnatural, the triazole backbone is inherently resistant to enzymatic degradation, while the reduced negative charge potentially improves cell penetration. The limitation of introduction of a triazole backbone into the antisense strand is its destabilising effect on the duplex formation with their complementary target. In this study, the 2'-modifications are used to restore the lost duplex stability and they have been found to be very efficient stabilising moieties. To evaluate the viability of this strategy, reporter gene assays based on splice-switching model are used. Promisingly, these modified oligonucleotides have successfully shown antisense splice-switching activity, suggesting there is further scope for their improvement.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:730453
Date January 2016
CreatorsDysko, Anna Monika
ContributorsBrown, Tom
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://ora.ox.ac.uk/objects/uuid:20fc1203-9751-4654-b497-5f4d97f874a1

Page generated in 0.0026 seconds