Return to search

Computational fluid dynamics investigation of the orientation of a pediatric left ventricle assist device cannula to reduce stroke events

Ventricle Assist Devices (VADs), which are typically either axial or centrifugal flow pumps implanted on the aortic arch, have been used to support patients who are awaiting cardiac transplantation. Success of the apparatus in the short term has led to long term use. Despite anticoagulation measures, blood clots (thrombi) have been known to form in the device itself or inside of the heart. The Ventricle Assist Devices supply blood flow via a conduit (cannula) implanted on the ascending aorta. Currently, the implantation angle of the VAD cannula is not taken into consideration. Since the VADs supply a significant amount of blood flow to the aorta, the implantation angle can greatly affect the trajectory of the formed thrombi as well as the cardiac flow field inside of the aortic arch. This study aims to vary the implantation angle of a pediatric Left Ventricle Assist Device (LVAD) through a series of computational fluid dynamics (CFD) software simulations focusing on the aortic arch and its branching arteries of a 20 kg pediatric patient in order to reduce the occurrence of stroke.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses1990-2015-2355
Date01 December 2012
CreatorsGuimond, Stephen
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceHIM 1990-2015

Page generated in 0.0131 seconds