Orientador: Mauro Hugo Mathias / Banca: Alvaro Manoel Souza Soares / Banca: José Elias Tomazini / Banca: Francisco Carlos Parquet Bizarria / Banca: Carlos Henrique Netto Lahoz / Resumo: Um importante aspecto no processo produtivo é proporcionar o funcionamento das máquinas o maior tempo possível sem o comprometimento na qualidade final do produto. Nesse sentido, a utilização de uma política de manutenção adequada se torna necessária para o monitoramento do desgaste dos componentes das máquinas a fim de aumentar o tempo de sua utilização sem comprometer a qualidade do produto. A manutenção baseada em condição se apresenta como a abordagem mais apropriada para esse controle. Dentre as diversas abordagens utilizadas para o desenvolvimento de programas para esse tipo de manutenção, as técnicas baseadas em Inteligência Artificial vêm se destacando no que diz respeito ao seu desempenho. Diante desse contexto, essa tese propõe uma Rede Neural Artificial, a qual, devidamente parametrizada, possibilita sua aplicação tanto para análise de vibrações quanto análise de partículas de desgaste. Para tanto, foi implementado um protótipo denominado NEURALNET-CBM, subdividido em dois módulos, Vibrações e Partículas. Os resultados dos testes mostram a efetividade da rede proposta, com um índice de acerto acima de 90% na classificação e identificação de defeitos e partículas de desgaste. / Abstract: An important aspect in the production process is to ensure the operability of a machine as long as possible without interfering on the final quality product. In this way, the use of a suitable maintenance policy is critical for monitoring the wear of the machine components in order to increase your useful life without any compromise of the product quality. The Condition-Based Maintenance is presented as the most appropriate approach for this control. Among several methods used to develop systems for this type of maintenance, techniques Artificial Intelligence has been standing out in relation their performance. Therefore, this thesis proposes a Artificial Neural Network, which, properly parameterized, it makes possible its application for both vibration and wear particle analysis. For this, we implemented a prototype named NEURALNET-CBM, divided into two modules: Vibration and Particle. The test results show the effectiveness of the proposed network, with accuracy rate greater than 90% in classifying and identification of defects and wear particles. / Doutor
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000679660 |
Date | January 2011 |
Creators | Almeida, Luis Fernando de. |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Guaratinguetá). |
Publisher | Guaratinguetá : [s.n.], |
Source Sets | Universidade Estadual Paulista |
Language | Portuguese |
Detected Language | Portuguese |
Type | text |
Format | 162 f. : |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.0021 seconds