Exocyst is a protein complex composed of eight subunits, evolutionarily conserved in yeasts, animals, and plants. The main function of exocyst is to mediate the tethering of secretory vesicles to the plasma membrane. However, the involvement of exocyst in some other processes, especially in autophagy, has been recently discovered. Plant exocyst is specific because most of its subunits have multiple paralogs. The most diversified subunit is EXO70, which is encoded by 23 paralogous genes in Arabidopsis thaliana. In this thesis, I dealt with subunit AtEXO70E2 (AT5G61010), which has been localized to double-membrane compartments considerably reminiscent of autophagosomes. These compartments were named EXPOs (for exocyst-positive organelles) and described as a component of unconventional protein secretion pathways. There are also hints that EXO70E2 could play a role in autophagic processes. However, details of this relationship remained unexplored. For my experiments, I used stably transformed lines of A. thaliana and transiently transformed leaves of Nicotiana benthamiana. I performed numerous colocalization experiments, applied various pharmacological treatments to the studied lines, and analyzed a mutant line in the EXO70E2 gene. According to my observations, protein EXO70E2 is expressed especially...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:452422 |
Date | January 2021 |
Creators | MoulĂk, Michal |
Contributors | Sabol, Peter, Janda, Martin |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds