Abstract
Mutations in BRCA1 and BRCA2 explain only about 20% of familial aggregation of breast cancer, suggesting involvement of additional susceptibility genes. In this study five DNA damage response genes, ATM, ATR, MRE11, NBS1 and RAD50, were considered as putative candidates to explain some of the remaining familial breast cancer risk, and were screened for germline mutations in families displaying genetic predisposition.
Analysis of ATM indicated that clearly pathogenic mutations seem to be restricted to those reported in ataxia-telangiectasia (A-T). However, a cancer risk modifying effect was suggested for a combination of two ATM polymorphisms, 5557G>A and IVS38-8T>C, as this allele seemed to associate with bilateral breast cancer (OR 10.2, 95% CI 3.1–33.8, p = 0.001).
The relevance of ATM mutations, originally identified in Finnish A-T patients, in breast cancer susceptibility was evaluated by a large case-control study. Two such alleles, 6903insA and 7570G>C, in addition to 8734A>G previously associated with breast cancer susceptibility, were observed. The overall mutation frequency in unselected cases (7/1124) was higher than in controls (1/1107), but a significantly elevated frequency was observed only in familial cases (6/541, p = 0.006, OR 12.4, 95% CI 1.5–103.3). These three mutations showed founder effects in their geographical occurrence, and had different functional consequences at protein level.
In ATR no disease-related mutations were observed, suggesting that it is not a breast cancer susceptibility gene.
The mutation screening of the Mre11 complex genes, MRE11, NBS1 and RAD50, revealed two novel potentially breast cancer associated alleles: NBS1 Leu150Phe and RAD50 687delT were observed in 2.0% (3/151) of the studied families. The subsequent study of newly diagnosed, unselected breast cancer cases indicated that RAD50 687delT is a relatively common low-penetrance susceptibility allele in Northern Finland (cases 8/317 vs. controls 6/1000, OR 4.3, 95% CI 1.5–12.5, p = 0.008). NBS1 Leu150Phe (2/317) together with a novel RAD50 IVS3-1G>A mutation (1/317) was also observed, both being absent from controls. Loss of the wild-type allele was not observed in the tumors of the studied mutation carriers, but they all showed an increase in chromosomal instability of peripheral T-lymphocytes. This suggests an effect for RAD50 and NBS1 haploinsufficiency on genomic integrity and susceptibility to cancer.
Identifer | oai:union.ndltd.org:oulo.fi/oai:oulu.fi:isbn978-951-42-8383-3 |
Date | 10 April 2007 |
Creators | Pylkäs, K. (Katri) |
Publisher | University of Oulu |
Source Sets | University of Oulu |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess, © University of Oulu, 2007 |
Relation | info:eu-repo/semantics/altIdentifier/pissn/0355-3221, info:eu-repo/semantics/altIdentifier/eissn/1796-2234 |
Page generated in 0.0024 seconds