We have studied the inhibitory effect of five polyphenols namely, resveratrol, piceatannol, quercetin, quercetrin, and quercetin-3-β-d glucoside on Escherichia coli ATP synthase. Recently published X-ray crystal structures of bovine mitochondrial ATP synthase inhibited by resveratrol, piceatannol, and quercetin, suggest that these compounds bind in a hydrophobic pocket between the γ-subunit C-terminal tip and the hydrophobic inside of the surrounding annulus in a region critical for rotation of the γ-subunit. Herein, we show that resveratrol, piceatannol, quercetin, quercetrin, or quercetin-3-β-d glucoside all inhibit E. coli ATP synthase but to different degrees. Whereas piceatannol inhibited ATPase essentially completely (∼0 residual activity), inhibition by other compounds was partial with ∼20% residual activity by quercetin, ∼50% residual activity by quercetin-3-β-d glucoside, and ∼60% residual activity by quercetrin or resveratrol. Piceatannol was the most potent inhibitor (IC50 ∼14 μM) followed by quercetin (IC50 ∼33 μM), quercetin-3-β-d glucoside (IC50 ∼71 μM), resveratrol (IC50 ∼94 μM), quercitrin (IC50 ∼120 μM). Inhibition was identical in both F1Fo membrane preparations as well as in isolated purified F1. In all cases inhibition was reversible. Interestingly, resveratrol and piceatannol inhibited both ATPase and ATP synthesis whereas quercetin, quercetrin or quercetin-3-β-d glucoside inhibited only ATPase activity and not ATP synthesis.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-18379 |
Date | 01 July 2009 |
Creators | Dadi, Prasanna K., Ahmad, Mubeen, Ahmad, Zulfiqar |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0018 seconds