Return to search

Limiting factors in ATP synthesis

<p>The aim of the present study was to investigate the biosynthesis of the ATP synthase in various tissues, and to test hypotheses about possible models of activation of several mitochondrial proteins, the ATP/ADP translocase and UCPs, that could utilize the proton gradient, thus bypassing the ATP synthase. </p><p>We have examined the role of the expression of the P1 isoform of the c-F<sub>o</sub> subunit in the biogenesis of ATP synthase in brown adipose tissue. Our findings point to a role for the c-F<sub>o</sub> subunit in defining the final content of the ATP synthase in brown adipose tissue.</p><p>We have analyzed sequences in the 3’UTR of the β subunit F<sub>1</sub>-ATPase mRNA that are important for formation of RNA-protein complexes. We could detect protein complexes that bind to two different sequence regions of the 3’UTR, one being the poly(A) tail and an adjacent region), and the other being a sequence stretch at the 3’ end of the 3’UTR able to form a stem-loop structure, which is evolutionarily conserved throughout mammalian species. </p><p>We investigated a role of the ATP/ADP carrier (ANT) in fatty acid-induced uncoupling in brown-fat mitochondria. We conclude that the ANT cannot substitute for UCP1 in fatty acid uncoupling in brown-fat mitochondria from mice lacking UCP1. We propose that the two ANT isoforms mediate proton translocation under different conditions.</p><p>We have investigated a role of UCP1 in defence against oxidative stress. We found that products of oxidative stress (4-HNE) could neither reactivate purine nucleotide-inhibited UCP1, nor induce additional activation of innately active UCP1 in brown-fat mitochondria from UCP1(+/+) and UCP1(-/-) mice. We conclude that UCP1 is not involved in defence against oxidative stress. </p><p>We evaluated possible uncoupling activity of UCP3 in skeletal muscle from warm- and cold-acclimated UCP1(+/+) and UCP1(-/-) mice. We conclude that no evidence exists for a higher UCP3-mediated uncoupling activity; a high UCP3 content in cold-acclimated UCP1(-/-) mice could possibly be linked to improved fatty acid oxidative capacity.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:su-987
Date January 2006
CreatorsKramarova, Tatiana
PublisherStockholm University, Wenner-Gren Institute for Experimental Biology, Stockholm : Wenner-Grens institut för experimentell biologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, monograph, text

Page generated in 0.002 seconds