Return to search

Automatização do processo de seleção de transformações para otimização do tempo de execução por meio de aprendizado de máquina no arcabouço da LLVM. / Transformation selection process automation for execution time optimization through machine learning on LLVM framework.

A rápida evolução do hardware demanda uma evolução contínua dos compiladores. Um processo de ajuste deve ser realizado pelos projetistas de compiladores para garantir que o código gerado pelo compilador mantenha uma determinada qualidade, seja em termos de tempo de processamento ou outra característica pré-definida. Este trabalho visou automatizar o processo de ajuste de compiladores por meio de técnicas de aprendizado de máquina. Como resultado os planos de compilação obtidos usando aprendizado de máquina com as características propostas produziram código para programas cujos valores para os tempos de execução se aproximaram daqueles seguindo o plano padrão utilizado pela LLVM. / The fast evolution of hardware demands a continue evolution of the compilers. Compiler designers must perform a tuning process to ensure that the code generated by the compiler maintain a certain quality, both in terms of processing time or another preset feature. This work aims to automate compiler adjustment process through machine learning techniques. As a result the compiler plans obtained using machine learning with the proposed features had produced code for programs whose values for the execution times approached those following the standard plan used by LLVM.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-12072016-084728
Date28 April 2015
CreatorsSabaliauskas, Jorge Augusto
ContributorsRocha, Ricardo Luis de Azevedo da
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0017 seconds