Lipid droplet (LD) autophagy (lipophagy) is a recently discovered selective form of autophagy and is a pathway for LD catabolism through the lysosome or vacuole. Therefore, lipophagy has therapeutic potential in the treatment of a variety of lipid related diseases in which increased cellular LDs are associated with pathophysiologies, such as obesity or atherosclerosis. This ubiquitous process has been an ongoing area of research within the budding yeast, Saccharomyces cerevisiae. However, there remains a need to better understand the regulators of this process. I have developed and validated a lipophagy library in yeast for the assessment of novel genetic regulators of stationary phase induced lipophagy. Through the screening of my library for roles in lipophagy I have identified many genetic regulators of lipophagy which include CUE1, UBC7, LHS1, HSP31, PLN1, TFS1, LAM6, OSH3, OSH4 and OSH7, among others. My screen highlights the power of this library to identify lipophagy regulators in S. cerevisiae, which can be utilised in the future to further the understanding of lipophagy.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/44433 |
Date | 03 January 2023 |
Creators | Fairman, Garrett |
Contributors | Ouimet, Mireille |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0021 seconds