Indiana University-Purdue University Indianapolis (IUPUI) / Toxoplasma gondii is an important human pathogen that infects millions of people worldwide and causing severe and potentially lethal disease in immunocompromised individuals. Recently, a homologue for the autophagy protein Atg8 (TgAtg8) was identified in Toxoplasma that is required for both canonical and noncanonical processes essential for parasite viability. Importantly, TgAtg8 functionality requires its conjugation to phosphatidylethanolamine through the activity of the Atg8 conjugation system. In this thesis, we characterized the proteins that interact with TgAtg8 and TgAtg3, a component of the Atg8 conjugation system, to further define their functions in Toxoplasma and identify opportunities for targeted inhibition of Atg8-related processes. We previously identified that TgAtg8 is acetylated at lysine 23 (K23) and assessed the role of this modification in this thesis. Using mutagenesis, we showed that K23 acetylation did not modulate the interaction with TgAtg3, but appeared to promote TgAtg8 protein stability. Additionally, endogenous mutation of K23 to the nonacetylatable amino acid arginine resulted in severe impairment of parasite replication and spontaneous differentiation into bradyzoites. To gain insight into the role of TgAtg8 in Toxoplasma biology, we next characterized TgAtg8 and TgAtg3 interacting proteins using affinity purification and mass spectrometry. We identified a novel group of interacting proteins that are unique to Toxoplasma, including the dynamin-related protein DrpC. Functional characterization of DrpC identified a potential role of TgAtg8 in trafficking of membrane from the Golgi to the nascent daughter parasites during replication. Lastly, we examined a group of small molecules recently identified as Atg3-Atg8 inhibitors in Plasmodium falciparum and assessed their activity against Toxoplasma. Although the compounds effectively inhibited Toxoplasma replication, they did so through novel mechanisms of action unrelated to the disruption of the TgAtg3-Atg8 interaction. Together, this work provides insight into the function of the Atg8 conjugation system in Toxoplasma that will help guide the future development of novel therapeutics targeting Atg8-related processes.
Identifer | oai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/14602 |
Date | 28 June 2017 |
Creators | Varberg, Joseph M. |
Contributors | Arrizabalaga, Gustavo, Sullivan, William J., Jr., Mosley, Amber, Safa, Ahmad, Vasko, Michael R. |
Source Sets | Indiana University-Purdue University Indianapolis |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Page generated in 0.0019 seconds