Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-05-05T17:36:02Z
No. of bitstreams: 1
raphaeldasilvaalvin.pdf: 3200596 bytes, checksum: 01129a5b7d70b7b3e44dd871c5c77b1d (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-05-17T13:41:10Z (GMT) No. of bitstreams: 1
raphaeldasilvaalvin.pdf: 3200596 bytes, checksum: 01129a5b7d70b7b3e44dd871c5c77b1d (MD5) / Made available in DSpace on 2017-05-17T13:41:10Z (GMT). No. of bitstreams: 1
raphaeldasilvaalvin.pdf: 3200596 bytes, checksum: 01129a5b7d70b7b3e44dd871c5c77b1d (MD5)
Previous issue date: 2009-02-19 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Os organofosforados encontram aplicações na indústria, nas áreas de corantes, vernizes, couro artificial, isolantes elétricos, impermeabilizantes, plásticos, aditivos de petróleo e dissolventes; também são usados na medicina no tratamento de doenças, como o glaucoma; no uso doméstico e na agricultura encontram aplicabilidade como inseticidas e pesticidas. Além dessas várias utilidades civis, os organofosforados são utilizados, também, como armas químicas de destruição em massa, e possuem estrutura similar àquelas dos compostos utilizados como inseticidas e pesticidas. No caso do VX, um organofosforado utilizado como arma química, a quebra da ligação PS é essencial na sua degradação química. Embora muitas reações químicas possam ser empregadas para decompor agentes químicos de guerra, somente algumas podem ser utilizadas na prática em uma neutralização, porque estas reações precisam ser simples e os reagentes empregados devem ser estáveis, baratos e de baixa massa molecular. No entanto, muitas das reações que podem ser úteis para a neutralização do agente neurotóxico VX ainda seguem em discussão em recentes pesquisas, mas na maioria delas se limita alguns sucessos a hidrólise catalisada. Nesta dissertação foram estudados processos de hidrólise catalisada do agente VX por MgO(001) por meio de cálculos ab initio. Foi utilizado o programa PWscf PlaneWaves Self Consistent Field. O PWscf utiliza a Teoria do Funcional da Densidade, a partir de um conjunto de base de autofunções dado por ondas planas e pseudopotenciais. Entre outros atributos, este código é capaz de calcular a energia do estado fundamental dos orbitais de KohnSham para um elétron, além de forças atômicas em diferentes condições de tensão, otimização estrutural e estado de transição. A molécula de VX foi substituída por uma molécula menor, chamada de pVX, em que foram substituídos alguns radicais do VX por grupos metila. Isto foi feito para diminuir o tamanho da molécula, que reduzirá o custo computacional, mas sem afetar substancialmente a química do problema, o estudo da quebra da ligação PS. O mecanismo de hidrólise proposto esta relacionado com a quebra heterolítica da ligação PS, com a conseqüente formação de íons intermediários RP+ e R'S, estes, por sua vez, estabilizados por quimissorção na superfície de MgO(001). Em conjunto com essa reação, acontece a dissociação de
moléculas de água para a formação dos íons H+ e HO, cujos íons também são estabilizados na superfície de MgO(001). O passo final é a recombinação desses íons, para gerar os produtos de hidrólise RPOH e R'SH, seguida pelo processo de dessorção destas moléculas da superfície do catalisador. Para a reação global de hidrólise da molécula de pVX, a variação da energia interna foi calculada em 5,66kcal/mol. Foram determinadas as estruturas dos íons RP+ e R'S estabilizados sobre a superfície de MgO(001), com uma energia de formação calculada em 0,20kcal/mol, indicando que os intermediários teriam boa estabilidade sobre a superfície se comparados com a molécula de pVX original. Na quimissorção dissociativa de moléculas de água sobre a superfície de MgO(001), verificouse que os íons formados somente ficam estabilizados se estiverem a uma distância mínima de 4,70Å. Qualquer distância abaixo desta levará a formação da molécula de água novamente. No processo envolvendo duas moléculas de água, apenas uma delas se dissocia, enquanto a outra estabiliza os íons formados via ligação de hidrogênio. A molécula não dissociada também interage com um sítio superficial de magnésio. Este resultado foi comprovado pelos cálculos de diferença de densidade de carga eletrônica do sistema, determinação do caminho de reação, onde este obteve uma barreira energética calculada em 5,55kcal/mol para a reação direta e em 7,53kcal/mol para a reação inversa, e pela dissociação parcial utilizando um trímero de moléculas de água, com energia calculada em 5,40kcal/mol. Os resultados permitem concluir que o mecanismo proposto para a hidrólise catalisada do agente neurotóxico VX pelo MgO é possível. Os modelos construídos podem ser modificados para testes de novos catalisadores com estrutura tipo MgO, via adição de defeitos ou dopantes à superfície da estrutura cristalina, visando a elaboração de catalisadores mais eficientes para a reação de hidrólise com o mesmo mecanismo. / The organophosphates are used in industry, in the fields of dyes, varnishes, artificial leather, electrical insulation, waterproofing, plastics, oil additives and solvents, are also used in medicine to treat diseases such as glaucoma, in the household and in agriculture are applied as insecticides and pesticides. Besides these various civilian facilities, the organophosphates are used as well as chemical weapons of mass destruction, and have similar structure to those of compounds used as insecticides and pesticides. In the case of VX, an organophosphate used as a chemical weapon, the fall in PS binding is essential in its chemical degradation. Although many chemical reactions can be used to decompose the chemical agents of war, only some can be used in practice in a breakthrough, because these reactions need to be simple and the reagents used should be stable, inexpensive and low molecular weight. However, many of the reactions that may be useful for the neutralization of the neurotoxic VX agent still follow under discussion in recent polls, but most of them are confined to some successes catalyzed hydrolysis. In this dissertation we studied processes of the VX agent catalyzed hydrolysis by MgO (001) by means of ab initio calculations. We used the program PWscf Plane Waves SelfConsistent Field. The PWscf using the Density Functional Theory from a set of basic autofunction given by plane waves and pseudopotentials. Among other attributes, this code is able to calculate the energy of the ground state of the KohnSham orbital for an electron, and atomic force under different conditions of stress, structural optimization and transition state. The VX molecule was replaced by a smaller molecule, called a pVX, which replaced some of the radicals VX for methyl groups. This was done to reduce the size of the molecule, which reduces the computational cost, but not substantially affect the chemistry of the problem, the study of breaking the link PS. The proposed mechanism of hydrolysis is related to the breaking of the link heterolytic PS, with the consequent formation of intermediate ion RP+ and R'S, they, in turn, stabilized by quimissorption the MgO(0010 surface. Together with this reaction, is the dissociation of water molecules to the formation of ions H+ and HO, whose ions are stabilized on the MgO(001) surface.
The final step is the recombination of these ions, to generate products of hydrolysis and RPOH and R'SH, followed by the process of desorption of molecules from the surface of the catalyst. For the overall reaction of hydrolysis of the molecule pVX, the variation of internal energy was calculated to be 5.66 kcal/mol. Were determined the structures of ion RP+ and R'S stabilized on the MgO(001) surface, with an formation energy calculated at 0.20 kcal/mol, indicating that the middlemen have good stability on the surface is compared with the pVX molecule original. In dissociative quimissorption of water molecules on the MgO(001) surface, it was found that the ions formed are stable only if a minimum distance of 4.70 Å. Any distance below this will lead to formation of the water molecule again. In the process involving two water molecules, only one is dissociated, while the other ions stabilizes by the hydrogen bonding formed. The nondissociated molecule also interacts with a surface site of magnesium. This result was confirmed by the calculations of load density difference of the system, determining the reaction path, where he obtained a energy barrier calculated at 5.55 kcal/mol for the direct reaction and 7.53 kcal/mol for the reverse reaction and by partial decoupling using a trimer of water molecules, with energy calculated at 5.40 kcal/mol. The results show that the proposed mechanism for the catalyzed hydrolysis of the neurotoxic agent VX by MgO is possible. The models constructed can be modified for testing of new catalysts with MgO type structure, via addition of doping or defects on the surface of the crystal structure, to the development of more efficient catalysts for the hydrolysis reaction with the same mechanism.
Identifer | oai:union.ndltd.org:IBICT/oai:hermes.cpd.ufjf.br:ufjf/4422 |
Date | 19 February 2009 |
Creators | Alvim, Raphael da Silva |
Contributors | Leitão, Alexandre Amaral, Borges Junior, Itamar, Rocha, Alexandre Braga da, Abreu, Heitor Avelino de |
Publisher | Universidade Federal de Juiz de Fora (UFJF), Programa de Pós-graduação em Química, UFJF, Brasil, ICE – Instituto de Ciências Exatas |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UFJF, instname:Universidade Federal de Juiz de Fora, instacron:UFJF |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0034 seconds