Le comportement du carbure de silicium cubique sous irradiation a été étudié par modélisation classique et ab initio, en se concentrant sur les processus élémentaires intervenant à l'échelle anométrique. Dans un premier temps, nous nous sommes intéressés à déterminer les énergies seuil de déplacement, des quantités difficiles à déterminer tant expérimentalement que théoriquement, ainsi que les paires de Frenkel associées. Dans le cadre de cette thèse, nous avons effectué des simulations en dynamique moléculaire classique et ab initio. Pour l'approche classique, deux<br />types de potentiels ont été utilisés : le potentiel de Tersoff, qui donne des résultats peu satisfaisants, et un nouveau potentiel développé dans le cadre de cette thèse. Ce potentiel permet une meilleure modélisation du SiC sous irradiation que la plupart des potentiels empiriques disponibles pour le SiC. Il est basé sur une fonction de type EDIP, initialement développée pour décrire les défauts dans le silicium, que nous avons généralisé au SiC. Pour l'approche ab initio, la faisabilité des calculs a été validée et des énergies moyennes de 19 eV pour C et 38 eV pour Si ont été déterminées, proches des valeurs empiriques utilisées dans la communauté scientifique. Les résultats obtenus avec le nouveau potentiel EDIP sont globalement en accord avec ces valeurs. Enfin, les processus élémentaires impliqués dans la guérison du cristal ont été étudiés en calculant la stabilité relative des paires de Frenkel formées et en déterminant des mécanismes de recombinaisons possibles par la méthode Nudged Elastic Band.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00127786 |
Date | 27 October 2006 |
Creators | Lucas, Guillaume |
Publisher | Université de Poitiers |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds