Females suffer anterior cruciate ligament (ACL) injuries at a 2 to 10-fold greater rate compared to male athletes participating in similar sports. Altered movement patterns and inadequate knee stiffness are two interrelated factors that may increase ACL injury risk. Onset of these neuromuscular risk factors may coincide with the rapid adolescent growth that results in the divergence of a multitude of neuromuscular parameters between sexes. The overall purpose of this dissertation was to determine if neuromuscular ACL injury risk factors in female athletes increase following rapid growth and development compared to males. Male and female athletes were tested with three-dimensional motion analysis techniques during a drop vertical jump over two consecutive years to determine if ACL injury risk factors increased. Pubertal females showed a significant longitudinal increase in knee abduction angle compared to post-pubertal females and both male groups. The increase in knee abduction angle appeared to remain consistent, as the post pubertal female cohort had greater overall knee abduction compared to post-pubertal males. Similar results were found with a greater magnitude of knee abduction moment in post-pubertal females compared to males. Males and females increased ankle, knee and hip active stiffness from the first to second year of testing. Ankle and hip stiffness were increased significantly more in the pubertal group compared to post-pubertal. Sex and maturational group differences were found in hip and ankle joint stiffness. Post-pubertal males had significantly greater hip stiffness than the other groups (even when normalized to body mass). This indicates that post-pubertal males utilized a different neuromuscular strategy during landing. Males had a significantly greater increase from year to year in vertical jump height compared to females. Vertical jump height is often related to a measure of whole body power and indicates that males had a significant neuromuscular spurt compared to females. Early puberty appears to be a critical phase related to the divergence of increased ACL injury risk factors. Injury prevention programs that focus on neuromuscular training may be beneficial to help address the development of ACL injury risk factors that occur in female athletes during maturation.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_diss-1711 |
Date | 01 January 2009 |
Creators | Ford, Kevin Ray |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of Kentucky Doctoral Dissertations |
Page generated in 0.0022 seconds