The abelian sandpile model, or chip firing game, is a cellular automaton on finite directed graphs often used to describe the phenomenon of self organized criticality. Here we present a thorough introduction to the theory of sandpiles. Additionally, we define a symmetric sandpile configuration, and show that such configurations form a subgroup of the sandpile group. Given a graph, we explore the existence of a quotient graph whose sandpile group is isomorphic to the symmetric subgroup of the original graph. These explorations are motivated by possible applications to counting the domino tilings of a 2n × 2n grid.
Identifer | oai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:hmc_theses-1220 |
Date | 01 May 2009 |
Creators | Durgin, Natalie |
Publisher | Scholarship @ Claremont |
Source Sets | Claremont Colleges |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | HMC Senior Theses |
Page generated in 0.002 seconds