Return to search

A study of fuzzy sets and systems with applications to group theory and decision making

In this study we apply the knowledge of fuzzy sets to group structures and also to decision-making implications. We study fuzzy subgroups of finite abelian groups. We set G = Z[subscript p[superscript n]] + Z[subscript q[superscript m]]. The classification of fuzzy subgroups of G using equivalence classes is introduced. First, we present equivalence relations on fuzzy subsets of X, and then extend it to the study of equivalence relations of fuzzy subgroups of a group G. This is then followed by the notion of flags and keychains projected as tools for enumerating fuzzy subgroups of G. In addition to this, we use linear ordering of the lattice of subgroups to characterize the maximal chains of G. Then we narrow the gap between group theory and decision-making using relations. Finally, a theory of the decision-making process in a fuzzy environment leads to a fuzzy version of capital budgeting. We define the goal, constraints and decision and show how they conflict with each other using membership function implications. We establish sets of intervals for projecting decision boundaries in general. We use the knowledge of triangular fuzzy numbers which are restricted field of fuzzy logic to evaluate investment projections.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:rhodes/vital:5417
Date January 2006
CreatorsGideon, Frednard
PublisherRhodes University, Faculty of Science, Mathematics
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Masters, MSc
Format101 p., pdf
RightsGideon, Frednard

Page generated in 0.0021 seconds