Return to search

Codigos esfericos em toros planares / Spherical codes on flat torus

Orientadores: Sueli Irene Rodrigues Costa, Jose Plinio de Oliveira Santos / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-13T23:35:30Z (GMT). No. of bitstreams: 1
Torezzan_Cristiano_D.pdf: 2362096 bytes, checksum: 1680bc5fc7cb94a63b0b11b50ac5a1c4 (MD5)
Previous issue date: 2009 / Resumo: Códigos esféricos em espaços euclidianos n-dimensionais são conjuntos finitos de pontos sobre superfícies esféricas e têm sido amplamente estudados em conexão com a transmissão de sinais sobre um canal Gaussiano. Para este propósito deseja-se maximizar a distância mínima entre dois pontos quaisquer do código, o que está fortemente relacionado com o problema mais geral do empacotamento em esferas, o qual contempla aplicações em outras áreas. Na primeira parte deste trabalho estudamos códigos esféricos gerados como órbita de um vetor unitário sob a ação de um grupo comutativo de matrizes ortogonais, os denominados códigos de grupo comutativo. Propomos um método para obter o melhor código de grupo comutativo n-dimensional de ordem M, que baseia-se na associação entre tais códigos em dimensão 2k e reticulados k-dimensionais. Utilizando fatorações matriciais conhecidas, como as formas normais de Hermite e Smith, demonstramos que é possível reduzir o número de casos a serem analisados através da identificação de códigos isométricos que podem ser descartados. O problema da busca do vetor inicial ótimo para códigos de grupo comutativo é formalmente estabelecido com um problema de programação linear e utilizado em uma das etapas do método. Apresentamos resultados numéricos, incluindo tabelas com códigos de grupo comutativo ótimos em várias dimensões. Outra contribuição deste trabalho é a introdução de uma nova família de códigos esféricos, na qual os pontos são alocados sobre a superfície da esfera unitária 2k-dimensional em camadas de toros planares. Em cada uma das camadas deste código, pode-se estabelecer um código de grupo para a geração dos sinais e utilizar os resultados acima mencionados. Além de limitantes, inferior e superior, para o número de pontos, um método para construção destes códigos é apresentado explicitamente e alguns exemplos são construídos. Os resultados mostram que tais códigos têm desempenho comparável aos melhores códigos esféricos estruturados conhecidos, com destaque para uma potencial vantagem no processo de codificação/decodificação, decorrente da homogeneidade, estrutura de grupo e associação a reticulados na metade da dimensão / Abstract: Spherical codes in Euclidean spaces are finite sets of points on the surface of a multidimensional sphere and have been widely studied in connection with the signal transmission over a Gaussian channel. For this purpose one fundamental issue is to maximize the minimum distance between two code points, what is strongly related to the more general problem of sphere packing. In the first part of this work we study spherical codes generated as orbit of a initial vector under the action of a commutative group of orthogonal matrices, the so called commutative group codes. A method for searching the best n-dimensional commutative group code of order M is presented. Based on the well known Hermite and Smith normal form decomposition of matrices, and also on the relation between 2k-dimensional com- mutative group codes and k-dimensional lattices, we show that it is possible to reduce the number of cases to be analyzed through the identification of isometric codes which can be discarded. The initial vector problem for these codes is formally established as a linear programming problem and used as a sub-routine of the method. Numerical results are presented, including tables of good commutative groups codes in several dimensions. Other contribution of this work is a new class of spherical codes, constructed by placing points on flat tori layers. The codebook on each torus can be generated by a commutative group of orthogonal matrices, using the results previously mentioned. Upper and lower bounds on performance are derived and a systematic method for constructing the codes is presented. Some examples are constructed and the results exhibit good performance when compared to the best known structured spherical codes, with some advantage in the encoding/decoding process, due to the homogeneity, group structure and the relation with lattices in the half of the dimension / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/306622
Date13 August 2018
CreatorsTorezzan, Cristiano, 1976-
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Santos, José Plínio de Oliveira, 1951-, Costa, Sueli Irene Rodrigues, Martínez Pérez, José Mario, Junior, Reginaldo Palazzo, Trevisan, Vilmar, Finamore, Weiler Alves
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática Aplicada
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Format115 p. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0031 seconds