Aside from performance, energy efficiency is an increasing challenge in database systems. To tackle both aspects in an integrated fashion, we pursue a hardware/software co-design approach. To fulfill the energy requirement from the hardware perspective, we utilize a low-energy processor design offering the possibility to us to place hundreds to millions of chips on a single board without any thermal restrictions. Furthermore, we address the performance requirement by the development of several database-specific instruction set extensions to customize each core, whereas each core does not have all extensions. Therefore, our hardware foundation is a low-energy processor consisting of a high number of heterogeneous cores. In this paper, we introduce our hardware setup on a system level and present several challenges for query processing. Based on these challenges, we describe two implementation concepts and a comparison between these concepts. Finally, we conclude the paper with some lessons learned and an outlook on our upcoming research directions.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:82089 |
Date | 12 January 2023 |
Creators | Lehner, Wolfgang, Ungethüm, Annett, Habich, Dirk, Karnagel, Tomas, Asmussen, Nils, Völp, Marcus, Nöthen, Benedikt, Fettweis, Gerhard |
Publisher | IEEE |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/acceptedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 978-1-4799-8442-8, 10.1109/ICDEW.2015.7129569, info:eu-repo/grantAgreement/Deutsche Forschungsgemeinschaft/Exzellenzinitiative/194636624//Center for Advancing Electronics Dresden/cfaed |
Page generated in 0.002 seconds