Return to search

Measurement of Water Vapor Concentration using Tunable Diode Laser Absorption Spectroscopy

Tunable diode laser spectroscopy and the Beer-Lambert relation has been used to measure the absorption of water vapor both in an absorption cell and in a shock tube. The purpose of this thesis is to develop a laser diagnostic capable of determining species concentration. The correlation between species concentration and absorption is known, and if one is known the other can be calculated. A diode laser was obtained which has a tunable range of 1325.7 - 1400.8 nm and is centered at 1384 nm. An experimental setup was created in which the laser was used to obtain absorption spectroscopy data for water vapor within two separate scenarios- in an absorption cell and in a shock tube. A model was constructed which enabled the calculation of the Voigt profile which in turn was used to determine the absorption coefficient and ultimately enable the utilization of absorption spectroscopy principles to determine species concentration and/or absorption percentage.
The experiments for the absorption cell were performed at room temperature. Twenty runs were performed and the average error for all runs was less than one percent. Three runs were performed for the shock-tube experiments. The absorption was calculated at three times- prior to the arrival of the shock, after the incident shock passed, and after the reflected shock passed. The temperatures for these conditions were 296K, 1060K, and 2000K respectively. These experiments showed reasonable agreement with theoretical calculations.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2009-12-7571
Date2009 December 1900
CreatorsBarrett, Alexander B.
ContributorsPetersen, Eric L.
Source SetsTexas A and M University
LanguageEnglish
Detected LanguageEnglish
TypeBook, Thesis, Electronic Thesis, text
Formatapplication/pdf

Page generated in 0.0019 seconds