Depuis quelques dizaines d 'années, plusieurs travaux de recherche ont été effectués dans le but d'utiliser des impulsions laser pour accélérer des électrons. Lors des dernières années, de nouveaux schémas d'accélération ont été proposés, dont le système d 'accélération par un faisceau TMo1 dans le vide. Nous avons étudié en détailles propriétés de ce schéma d 'accélération au moyen de solutions numériques des équations différentielles régissant le mouvement des électrons et la propagation de faisceau. Ainsi, nous avons défini plus clairement l'importance de la durée d'impulsion sur le nuage d 'électrons, et cela en fonction du temps. Afin de mieux prévoir certaines conséquences expérimentales, nous avons également étudié le comportement d 'un nuage qui n 'est pas automatiquement placé sur l'axe de propagation. Finalement, nous avons prouvé numériquement que le gain en énergie des électrons dépend de la dimension de la taille de faisceau au pincement (<<beam waist¿) lors de l'accélération pour une puissance laser donnée. En d 'autres termes, la taille de faisceau devient un paramètre clé dans l'ajustement du gain en énergie des électrons soumis à un faisceau TMo1 ultra-intense et ultrabref; en effet, il y a une dimension optimale de la taille de faisceau au pincement afin d 'obtenir le gain en énergie le plus élevé.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/20458 |
Date | 13 April 2018 |
Creators | Fortin, Pierre-Louis |
Contributors | Piché, Michel |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | mémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | x, 78 f., application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.002 seconds