An accidental criticality may occur in a solution of fissile material. Since the processing of nuclear materials in solution is prevalent throughout the fuel cycle, it would be judicious to have the capability to predict a possible hazard. In view of this concern, a computer simulation was performed of the Los Alamos accident of December 30, 1958, in which the actuation of an electric stirrer produced a sudden criticality. A complete equation of state for a liquid containing gas bubbles was coupled with the equations of energy, momentum, and space-independent point kinetics. Multiplication calculations, implemented with the Monte Carlo Code for Neutron and Photon Transport (MCNP), were performed on thermally expanding solution geometries, to generate a reactivity feedback representation. With the knowledge of the total energy produced in the accident, the maximum reciprocal period on which the power rose was computed.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/276965 |
Date | January 1989 |
Creators | Pribyl, David James, 1963- |
Contributors | Hetrick, David L. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Thesis-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.002 seconds